Difference between revisions of "AY Honors/Math Skills III/Requirements"

From Pathfinder Wiki
< AY Honors‎ | Math Skills IIIAY Honors/Math Skills III/Requirements
m (Protected "AY Honor Math Skills III Requirements": Bot: Protecting all pages from category .*/e[sn] ([Move=Allow only administrators] (indefinite) [Edit=Allow only administrators] (indefinite)))
(Marked this version for translation)
Line 6: Line 6:
  
  
<b>1. <section begin=req1 /><noinclude><translate></noinclude>Have the Math Skills II honor.  
+
<b>1. <section begin=req1 /><noinclude><translate><!--T:1-->
 +
</noinclude>Have the Math Skills II honor.  
 
<noinclude></translate></noinclude><section end=req1 /></b>
 
<noinclude></translate></noinclude><section end=req1 /></b>
  
<b>2. <section begin=req2 /><noinclude><translate></noinclude>Solve the following operations using the traditional algorithm:  
+
<b>2. <section begin=req2 /><noinclude><translate><!--T:2-->
 +
</noinclude>Solve the following operations using the traditional algorithm:  
 
<noinclude></translate></noinclude><section end=req2 /></b>
 
<noinclude></translate></noinclude><section end=req2 /></b>
  
:<b>a. <section begin=req2a /><noinclude><translate></noinclude>641 + 135  
+
:<b>a. <section begin=req2a /><noinclude><translate><!--T:3-->
 +
</noinclude>641 + 135  
 
<noinclude></translate></noinclude><section end=req2a /></b>
 
<noinclude></translate></noinclude><section end=req2a /></b>
  
:<b>b. <section begin=req2b /><noinclude><translate></noinclude>845 - 124  
+
:<b>b. <section begin=req2b /><noinclude><translate><!--T:4-->
 +
</noinclude>845 - 124  
 
<noinclude></translate></noinclude><section end=req2b /></b>
 
<noinclude></translate></noinclude><section end=req2b /></b>
  
:<b>c. <section begin=req2c /><noinclude><translate></noinclude>34 x 125  
+
:<b>c. <section begin=req2c /><noinclude><translate><!--T:5-->
 +
</noinclude>34 x 125  
 
<noinclude></translate></noinclude><section end=req2c /></b>
 
<noinclude></translate></noinclude><section end=req2c /></b>
  
:<b>d. <section begin=req2d /><noinclude><translate></noinclude>856 ÷ 24  
+
:<b>d. <section begin=req2d /><noinclude><translate><!--T:6-->
 +
</noinclude>856 ÷ 24  
 
<noinclude></translate></noinclude><section end=req2d /></b>
 
<noinclude></translate></noinclude><section end=req2d /></b>
  
<b>3. <section begin=req3 /><noinclude><translate></noinclude>Identify and classify the numerical sets.  
+
<b>3. <section begin=req3 /><noinclude><translate><!--T:7-->
 +
</noinclude>Identify and classify the numerical sets.  
 
<noinclude></translate></noinclude><section end=req3 /></b>
 
<noinclude></translate></noinclude><section end=req3 /></b>
  
<b>4. <section begin=req4 /><noinclude><translate></noinclude>Demonstrate the ability to solve the following equations:  
+
<b>4. <section begin=req4 /><noinclude><translate><!--T:8-->
 +
</noinclude>Demonstrate the ability to solve the following equations:  
 
<noinclude></translate></noinclude><section end=req4 /></b>
 
<noinclude></translate></noinclude><section end=req4 /></b>
  
:<b>a. <section begin=req4a /><noinclude><translate></noinclude>2x - 10 = -4x + 14  
+
:<b>a. <section begin=req4a /><noinclude><translate><!--T:9-->
 +
</noinclude>2x - 10 = -4x + 14  
 
<noinclude></translate></noinclude><section end=req4a /></b>
 
<noinclude></translate></noinclude><section end=req4a /></b>
  
:<b>b. <section begin=req4b /><noinclude><translate></noinclude>18x - 43 = 65  
+
:<b>b. <section begin=req4b /><noinclude><translate><!--T:10-->
 +
</noinclude>18x - 43 = 65  
 
<noinclude></translate></noinclude><section end=req4b /></b>
 
<noinclude></translate></noinclude><section end=req4b /></b>
  
:<b>c. <section begin=req4c /><noinclude><translate></noinclude>23x - 16 = 14 - 17x  
+
:<b>c. <section begin=req4c /><noinclude><translate><!--T:11-->
 +
</noinclude>23x - 16 = 14 - 17x  
 
<noinclude></translate></noinclude><section end=req4c /></b>
 
<noinclude></translate></noinclude><section end=req4c /></b>
  
:<b>d. <section begin=req4d /><noinclude><translate></noinclude>10y - 5(1 + y) = 3(2y - 2) - 20  
+
:<b>d. <section begin=req4d /><noinclude><translate><!--T:12-->
 +
</noinclude>10y - 5(1 + y) = 3(2y - 2) - 20  
 
<noinclude></translate></noinclude><section end=req4d /></b>
 
<noinclude></translate></noinclude><section end=req4d /></b>
  
:<b>e. <section begin=req4e /><noinclude><translate></noinclude>x(x + 4) + x(x + 2) = 2x² + 12  
+
:<b>e. <section begin=req4e /><noinclude><translate><!--T:13-->
 +
</noinclude>x(x + 4) + x(x + 2) = 2x² + 12  
 
<noinclude></translate></noinclude><section end=req4e /></b>
 
<noinclude></translate></noinclude><section end=req4e /></b>
  
:<b>f. <section begin=req4f /><noinclude><translate></noinclude>(x - 5) / 10 + (1 - 2x) / 5 = (3-x) / 4  
+
:<b>f. <section begin=req4f /><noinclude><translate><!--T:14-->
 +
</noinclude>(x - 5) / 10 + (1 - 2x) / 5 = (3-x) / 4  
 
<noinclude></translate></noinclude><section end=req4f /></b>
 
<noinclude></translate></noinclude><section end=req4f /></b>
  
:<b>g. <section begin=req4g /><noinclude><translate></noinclude>4x(x + 6) - x² = 5x²  
+
:<b>g. <section begin=req4g /><noinclude><translate><!--T:15-->
 +
</noinclude>4x(x + 6) - x² = 5x²  
 
<noinclude></translate></noinclude><section end=req4g /></b>
 
<noinclude></translate></noinclude><section end=req4g /></b>
  
<b>5. <section begin=req5 /><noinclude><translate></noinclude>Demonstrate the ability to solve the following products:  
+
<b>5. <section begin=req5 /><noinclude><translate><!--T:16-->
 +
</noinclude>Demonstrate the ability to solve the following products:  
 
<noinclude></translate></noinclude><section end=req5 /></b>
 
<noinclude></translate></noinclude><section end=req5 /></b>
  
:<b>a. <section begin=req5a /><noinclude><translate></noinclude>(x + 3y)²
+
:<b>a. <section begin=req5a /><noinclude><translate><!--T:17-->
 +
</noinclude>(x + 3y)²
 
<noinclude></translate></noinclude><section end=req5a /></b>
 
<noinclude></translate></noinclude><section end=req5a /></b>
  
:<b>b. <section begin=req5b /><noinclude><translate></noinclude>(a<sup>5</sup> + 2bc)²  
+
:<b>b. <section begin=req5b /><noinclude><translate><!--T:18-->
 +
</noinclude>(a<sup>5</sup> + 2bc)²  
 
<noinclude></translate></noinclude><section end=req5b /></b>
 
<noinclude></translate></noinclude><section end=req5b /></b>
  
:<b>c. <section begin=req5c /><noinclude><translate></noinclude>(3x + y²)²  
+
:<b>c. <section begin=req5c /><noinclude><translate><!--T:19-->
 +
</noinclude>(3x + y²)²  
 
<noinclude></translate></noinclude><section end=req5c /></b>
 
<noinclude></translate></noinclude><section end=req5c /></b>
  
:<b>d. <section begin=req5d /><noinclude><translate></noinclude>(1 + 5m)(1 - 5m)  
+
:<b>d. <section begin=req5d /><noinclude><translate><!--T:20-->
 +
</noinclude>(1 + 5m)(1 - 5m)  
 
<noinclude></translate></noinclude><section end=req5d /></b>
 
<noinclude></translate></noinclude><section end=req5d /></b>
  
:<b>e. <section begin=req5e /><noinclude><translate></noinclude>(ab - c)²  
+
:<b>e. <section begin=req5e /><noinclude><translate><!--T:21-->
 +
</noinclude>(ab - c)²  
 
<noinclude></translate></noinclude><section end=req5e /></b>
 
<noinclude></translate></noinclude><section end=req5e /></b>
  
:<b>f. <section begin=req5f /><noinclude><translate></noinclude>(m - 1)³  
+
:<b>f. <section begin=req5f /><noinclude><translate><!--T:22-->
 +
</noinclude>(m - 1)³  
 
<noinclude></translate></noinclude><section end=req5f /></b>
 
<noinclude></translate></noinclude><section end=req5f /></b>
  
:<b>g. <section begin=req5g /><noinclude><translate></noinclude>(a³ - b³) (a³ + b³)  
+
:<b>g. <section begin=req5g /><noinclude><translate><!--T:23-->
 +
</noinclude>(a³ - b³) (a³ + b³)  
 
<noinclude></translate></noinclude><section end=req5g /></b>
 
<noinclude></translate></noinclude><section end=req5g /></b>
  
<b>6. <section begin=req6 /><noinclude><translate></noinclude>Calculate the area of ​​the following figures:  
+
<b>6. <section begin=req6 /><noinclude><translate><!--T:24-->
 +
</noinclude>Calculate the area of ​​the following figures:  
 
[[File:Math Skills III figures.png|700px]]
 
[[File:Math Skills III figures.png|700px]]
 
<noinclude></translate></noinclude><section end=req6 /></b>
 
<noinclude></translate></noinclude><section end=req6 /></b>
  
<b>7. <section begin=req7 /><noinclude><translate></noinclude>In the [[Adventist_Youth_Honors_Answer_Book/Recreation/Orienteering|Orienteering]] honor, the Pathfinder must have knowledge of angles to know how to use cartographic charts and to use a compass. Demonstrate the ability to convert angles to minutes, minutes to seconds, showing three practical examples.  
+
<b>7. <section begin=req7 /><noinclude><translate><!--T:25-->
 +
</noinclude>In the [[Adventist_Youth_Honors_Answer_Book/Recreation/Orienteering|Orienteering]] honor, the Pathfinder must have knowledge of angles to know how to use cartographic charts and to use a compass. Demonstrate the ability to convert angles to minutes, minutes to seconds, showing three practical examples.  
 
<noinclude></translate></noinclude><section end=req7 /></b>
 
<noinclude></translate></noinclude><section end=req7 /></b>
  
<b>8. <section begin=req8 /><noinclude><translate></noinclude>In the [[Adventist_Youth_Honors_Answer_Book/Recreation/Pioneering|Pioneering]] honor, we learned to build camp furniture, which has a whole mathematical relationship. Design and present some camp furniture where geometric shapes appear and classify each one. Cite three examples.  
+
<b>8. <section begin=req8 /><noinclude><translate><!--T:26-->
 +
</noinclude>In the [[Adventist_Youth_Honors_Answer_Book/Recreation/Pioneering|Pioneering]] honor, we learned to build camp furniture, which has a whole mathematical relationship. Design and present some camp furniture where geometric shapes appear and classify each one. Cite three examples.  
 
<noinclude></translate></noinclude><section end=req8 /></b>
 
<noinclude></translate></noinclude><section end=req8 /></b>
  
<b>9. <section begin=req9 /><noinclude><translate></noinclude>Present a poster showing ten practical examples of geometric figures used in a daily routine. It can be as cutouts, photos or design.  
+
<b>9. <section begin=req9 /><noinclude><translate><!--T:27-->
 +
</noinclude>Present a poster showing ten practical examples of geometric figures used in a daily routine. It can be as cutouts, photos or design.  
 
<noinclude></translate></noinclude><section end=req9 /></b>
 
<noinclude></translate></noinclude><section end=req9 /></b>
  
<b>10. <section begin=req10 /><noinclude><translate></noinclude>Demonstrate the ability to solve the following proportion problems:  
+
<b>10. <section begin=req10 /><noinclude><translate><!--T:28-->
 +
</noinclude>Demonstrate the ability to solve the following proportion problems:  
 
<noinclude></translate></noinclude><section end=req10 /></b>
 
<noinclude></translate></noinclude><section end=req10 /></b>
  
:<b>a. <section begin=req10a /><noinclude><translate></noinclude>At 60 km/h I travel between two cities in two hours. Traveling at 80 km/h, what is the estimated time to travel this route?  
+
:<b>a. <section begin=req10a /><noinclude><translate><!--T:29-->
 +
</noinclude>At 60 km/h I travel between two cities in two hours. Traveling at 80 km/h, what is the estimated time to travel this route?  
 
<noinclude></translate></noinclude><section end=req10a /></b>
 
<noinclude></translate></noinclude><section end=req10a /></b>
  
:<b>b. <section begin=req10b /><noinclude><translate></noinclude>At an average of 90 km/h, I can make a journey in three hours. To make this journey in just two hours, what should my average speed be?  
+
:<b>b. <section begin=req10b /><noinclude><translate><!--T:30-->
 +
</noinclude>At an average of 90 km/h, I can make a journey in three hours. To make this journey in just two hours, what should my average speed be?  
 
<noinclude></translate></noinclude><section end=req10b /></b>
 
<noinclude></translate></noinclude><section end=req10b /></b>
  
:<b>c. <section begin=req10c /><noinclude><translate></noinclude>If 20 men working for 20 days build 500 meters of a wall, how many men will it take to build 1000 meters more of this wall in 30 days?  
+
:<b>c. <section begin=req10c /><noinclude><translate><!--T:31-->
 +
</noinclude>If 20 men working for 20 days build 500 meters of a wall, how many men will it take to build 1000 meters more of this wall in 30 days?  
 
<noinclude></translate></noinclude><section end=req10c /></b>
 
<noinclude></translate></noinclude><section end=req10c /></b>
  
<b>11. <section begin=req11 /><noinclude><translate></noinclude>Demonstrate the ability to solve problem situations involving equations:  
+
<b>11. <section begin=req11 /><noinclude><translate><!--T:32-->
 +
</noinclude>Demonstrate the ability to solve problem situations involving equations:  
 
<noinclude></translate></noinclude><section end=req11 /></b>
 
<noinclude></translate></noinclude><section end=req11 /></b>
  
:<b>a. <section begin=req11a /><noinclude><translate></noinclude>I have the following choice: I buy 20 units of a product with all the money I have, or buy only 14 units of a project with all the money I have, or buy only 14 units and I still have $15.00 in change. What is the unit value of this product?  
+
:<b>a. <section begin=req11a /><noinclude><translate><!--T:33-->
 +
</noinclude>I have the following choice: I buy 20 units of a product with all the money I have, or buy only 14 units of a project with all the money I have, or buy only 14 units and I still have $15.00 in change. What is the unit value of this product?  
 
<noinclude></translate></noinclude><section end=req11a /></b>
 
<noinclude></translate></noinclude><section end=req11a /></b>
  
:<b>b. <section begin=req11b /><noinclude><translate></noinclude>What is the root of the equation 7x - 2 = -4x + 5?  
+
:<b>b. <section begin=req11b /><noinclude><translate><!--T:34-->
 +
</noinclude>What is the root of the equation 7x - 2 = -4x + 5?  
 
<noinclude></translate></noinclude><section end=req11b /></b>
 
<noinclude></translate></noinclude><section end=req11b /></b>
  
:<b>c. <section begin=req11c /><noinclude><translate></noinclude>If I add 8 to the amount of toy cars I own, I will have the same amount of cars as my brother if, of the 28 that he owns, the amount that I own is subtracted. How many toy cars do I have?  
+
:<b>c. <section begin=req11c /><noinclude><translate><!--T:35-->
 +
</noinclude>If I add 8 to the amount of toy cars I own, I will have the same amount of cars as my brother if, of the 28 that he owns, the amount that I own is subtracted. How many toy cars do I have?  
 
<noinclude></translate></noinclude><section end=req11c /></b>
 
<noinclude></translate></noinclude><section end=req11c /></b>
 
<section end=Body />
 
<section end=Body />
  
 
<noinclude><translate>
 
<noinclude><translate>
 +
<!--T:36-->
 
[[Category:Honor Requirements|{{#titleparts:{{PAGENAME}}|1|2}}]]
 
[[Category:Honor Requirements|{{#titleparts:{{PAGENAME}}|1|2}}]]
 
[[Category:Honor Requirements Revision 3|{{#titleparts:{{PAGENAME}}|1|2}}]]
 
[[Category:Honor Requirements Revision 3|{{#titleparts:{{PAGENAME}}|1|2}}]]
 
</translate></noinclude>
 
</translate></noinclude>

Revision as of 15:25, 8 March 2021

Other languages:
English • ‎español • ‎français • ‎português do Brasil




Math Skills III

Authority:
Category:
Skill Level:
Year Introduced:
Math Skills III AY Honor.png



1. Have the Math Skills II honor.

2. Solve the following operations using the traditional algorithm:

a. 641 + 135

b. 845 - 124

c. 34 x 125

d. 856 ÷ 24

3. Identify and classify the numerical sets.

4. Demonstrate the ability to solve the following equations:

a. 2x - 10 = -4x + 14

b. 18x - 43 = 65

c. 23x - 16 = 14 - 17x

d. 10y - 5(1 + y) = 3(2y - 2) - 20

e. x(x + 4) + x(x + 2) = 2x² + 12

f. (x - 5) / 10 + (1 - 2x) / 5 = (3-x) / 4

g. 4x(x + 6) - x² = 5x²

5. Demonstrate the ability to solve the following products:

a. (x + 3y)²

b. (a5 + 2bc)²

c. (3x + y²)²

d. (1 + 5m)(1 - 5m)

e. (ab - c)²

f. (m - 1)³

g. (a³ - b³) (a³ + b³)

6. Calculate the area of ​​the following figures: Math Skills III figures.png

7. In the Orienteering honor, the Pathfinder must have knowledge of angles to know how to use cartographic charts and to use a compass. Demonstrate the ability to convert angles to minutes, minutes to seconds, showing three practical examples.

8. In the Pioneering honor, we learned to build camp furniture, which has a whole mathematical relationship. Design and present some camp furniture where geometric shapes appear and classify each one. Cite three examples.

9. Present a poster showing ten practical examples of geometric figures used in a daily routine. It can be as cutouts, photos or design.

10. Demonstrate the ability to solve the following proportion problems:

a. At 60 km/h I travel between two cities in two hours. Traveling at 80 km/h, what is the estimated time to travel this route?

b. At an average of 90 km/h, I can make a journey in three hours. To make this journey in just two hours, what should my average speed be?

c. If 20 men working for 20 days build 500 meters of a wall, how many men will it take to build 1000 meters more of this wall in 30 days?

11. Demonstrate the ability to solve problem situations involving equations:

a. I have the following choice: I buy 20 units of a product with all the money I have, or buy only 14 units of a project with all the money I have, or buy only 14 units and I still have $15.00 in change. What is the unit value of this product?

b. What is the root of the equation 7x - 2 = -4x + 5?

c. If I add 8 to the amount of toy cars I own, I will have the same amount of cars as my brother if, of the 28 that he owns, the amount that I own is subtracted. How many toy cars do I have?