Difference between revisions of "AY Honors/Math Skills III/Requirements/pt-br"

From Pathfinder Wiki
< AY Honors‎ | Math Skills IIIAY Honors/Math Skills III/Requirements/pt-br
(Created page with "</noinclude>18x - 43 = 65 <noinclude>")
(Created page with "</noinclude>(x + 3y)² <noinclude>")
Line 39: Line 39:
 
<noinclude></noinclude><section end=req4d /></b>
 
<noinclude></noinclude><section end=req4d /></b>
  
:<b>e. <section begin=req4e /><noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
:<b>e. <section begin=req4e /><noinclude></noinclude>x(x + 4) + x(x + 2) = 2x² + 12
</noinclude>x(x + 4) + x(x + 2) = 2x² + 12
+
<noinclude></noinclude><section end=req4e /></b>
<noinclude>
 
</div></noinclude><section end=req4e /></b>
 
  
:<b>f. <section begin=req4f /><noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
:<b>f. <section begin=req4f /><noinclude></noinclude>(x - 5) / 10 + (1 - 2x) / 5 = (3-x) / 4
</noinclude>(x - 5) / 10 + (1 - 2x) / 5 = (3-x) / 4
+
<noinclude></noinclude><section end=req4f /></b>
<noinclude>
 
</div></noinclude><section end=req4f /></b>
 
  
:<b>g. <section begin=req4g /><noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
:<b>g. <section begin=req4g /><noinclude></noinclude>4x(x + 6) - x² = 5x²
</noinclude>4x(x + 6) - x² = 5x²
+
<noinclude></noinclude><section end=req4g /></b>
<noinclude>
 
</div></noinclude><section end=req4g /></b>
 
  
 
<section begin=challenge />
 
<section begin=challenge />
<b>5. <section begin=req5 /><noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
<b>5. <section begin=req5 /><noinclude></noinclude>Demonstrar habilidade de resolver os seguintes produtos notáveis:
</noinclude>Demonstrate the ability to solve the following products:
+
<noinclude></noinclude><section end=req5 /></b>
<noinclude>
 
</div></noinclude><section end=req5 /></b>
 
  
:<b>a. <section begin=req5a /><noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
:<b>a. <section begin=req5a /><noinclude></noinclude>(x + 3y)²
</noinclude>(x + 3y)²
+
<noinclude></noinclude><section end=req5a /></b>
<noinclude>
 
</div></noinclude><section end=req5a /></b>
 
  
:<b>b. <section begin=req5b /><noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
:<b>b. <section begin=req5b /><noinclude></noinclude>(a<sup>5</sup> + 2bc)²
</noinclude>(a<sup>5</sup> + 2bc)²
+
<noinclude></noinclude><section end=req5b /></b>
<noinclude>
 
</div></noinclude><section end=req5b /></b>
 
  
:<b>c. <section begin=req5c /><noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
:<b>c. <section begin=req5c /><noinclude></noinclude>(3x + y²)²
</noinclude>(3x + y²)²
+
<noinclude></noinclude><section end=req5c /></b>
<noinclude>
 
</div></noinclude><section end=req5c /></b>
 
  
:<b>d. <section begin=req5d /><noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
:<b>d. <section begin=req5d /><noinclude></noinclude>(1 + 5m)(1 - 5m)
</noinclude>(1 + 5m)(1 - 5m)
+
<noinclude></noinclude><section end=req5d /></b>
<noinclude>
 
</div></noinclude><section end=req5d /></b>
 
  
:<b>e. <section begin=req5e /><noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
:<b>e. <section begin=req5e /><noinclude></noinclude>(ab - c)²
</noinclude>(ab - c)²
+
<noinclude></noinclude><section end=req5e /></b>
<noinclude>
 
</div></noinclude><section end=req5e /></b>
 
  
:<b>f. <section begin=req5f /><noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
:<b>f. <section begin=req5f /><noinclude></noinclude>(m - 1)³
</noinclude>(m - 1)³
+
<noinclude></noinclude><section end=req5f /></b>
<noinclude>
 
</div></noinclude><section end=req5f /></b>
 
  
:<b>g. <section begin=req5g /><noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
:<b>g. <section begin=req5g /><noinclude></noinclude>(a³ - b³) (a³ + b³)
</noinclude>(a³ - b³) (a³ + b³)
+
<noinclude></noinclude><section end=req5g /></b>
<noinclude>
 
</div></noinclude><section end=req5g /></b>
 
 
<section end=challenge />
 
<section end=challenge />
  
<b>6. <section begin=req6 /><noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
+
<b>6. <section begin=req6 /><noinclude></noinclude>Calcular a área das seguintes figuras planas:
</noinclude>Calculate the area of ​​the following figures:
 
 
[[File:Math Skills III figures.png|700px]]
 
[[File:Math Skills III figures.png|700px]]
<noinclude>
+
<noinclude></noinclude><section end=req6 /></b>
</div></noinclude><section end=req6 /></b>
 
  
 
<b>7. <section begin=req7 /><noinclude><div lang="en" dir="ltr" class="mw-content-ltr">
 
<b>7. <section begin=req7 /><noinclude><div lang="en" dir="ltr" class="mw-content-ltr">

Revision as of 16:54, 10 June 2021

Other languages:
English • ‎español • ‎français • ‎português do Brasil
Habilidades em matemática III

Nível de Habilidade

3

Ano

2012

Version

26.11.2024

Autoridade de Aprovação

Divisão Sul Americana

Math Skills III AY Honor.png
Habilidades em matemática III
Ciência e Saúde
Nível de Habilidade
123
Autoridade de Aprovação
Divisão Sul Americana
Ano de Introdução
2012
Veja também



1. Ter a especialidade Habilidades em matemática II.

2. Resolver as seguintes operações usando o algoritmo tradicional:

a. 641 + 135

b. 845 - 124

c. 34 x 125

d. 856 ÷ 24

3. Identificar e classificar os conjuntos numéricos.

4. Demonstrar habilidade de resolver as seguintes equações:

a. 2x - 10 = -4x + 14

b. 18x - 43 = 65

c. 23x - 16 = 14 - 17x

d. 10y - 5(1 + y) = 3(2y - 2) - 20

e. x(x + 4) + x(x + 2) = 2x² + 12

f. (x - 5) / 10 + (1 - 2x) / 5 = (3-x) / 4

g. 4x(x + 6) - x² = 5x²


5. Demonstrar habilidade de resolver os seguintes produtos notáveis:

a. (x + 3y)²

b. (a5 + 2bc)²

c. (3x + y²)²

d. (1 + 5m)(1 - 5m)

e. (ab - c)²

f. (m - 1)³

g. (a³ - b³) (a³ + b³)


6. Calcular a área das seguintes figuras planas: Math Skills III figures.png

7.

In the Orienteering honor, the Pathfinder must have knowledge of angles to know how to use cartographic charts and to use a compass. Demonstrate the ability to convert angles to minutes, minutes to seconds, showing three practical examples.

8.

In the Pioneering honor, we learned to build camp furniture, which has a whole mathematical relationship. Design and present some camp furniture where geometric shapes appear and classify each one. Cite three examples.

9.

Present a poster showing ten practical examples of geometric figures used in a daily routine. It can be as cutouts, photos or design.

10.

Demonstrate the ability to solve the following proportion problems:

a.

At 60 km/h I travel between two cities in two hours. Traveling at 80 km/h, what is the estimated time to travel this route?

b.

At an average of 90 km/h, I can make a journey in three hours. To make this journey in just two hours, what should my average speed be?

c.

If 20 men working for 20 days build 500 meters of a wall, how many men will it take to build 1000 meters more of this wall in 30 days?

11.

Demonstrate the ability to solve problem situations involving equations:

a.

I have the following choice: I buy 20 units of a product with all the money I have, or buy only 14 units of a project with all the money I have, or buy only 14 units and I still have $15.00 in change. What is the unit value of this product?

b.

What is the root of the equation 7x - 2 = -4x + 5?

c.

If I add 8 to the amount of toy cars I own, I will have the same amount of cars as my brother if, of the 28 that he owns, the amount that I own is subtracted. How many toy cars do I have?