Difference between revisions of "AY Honors/Airplane Modeling/Answer Key"

From Pathfinder Wiki
< AY Honors‎ | Airplane ModelingAY Honors/Airplane Modeling/Answer Key
Line 150: Line 150:
  
 
The mechanical device attached to the engine that rotates to push against air and create thrust.
 
The mechanical device attached to the engine that rotates to push against air and create thrust.
 +
 +
; Dihedral:
 +
 +
Dihedral is where the right and left wing tips are higher than the fuselage. More dihedral generally means that a plane will be more stable in the air, but will be more difficult to turn. Most planes require a bit of dihedral to fly well.
 +
 +
; Elevator:
 +
 +
Elevator is the term used to describe a plane's horizontal control surface on the tail. This surface enables a plane to pitch upwards or downwards. When an elevator surface moves upwards, the tail moves downwards (the nose of the plane then points up) and vice-versa. Without an elevator, it is hard to control the altitude of a plane as you can't control the rise and fall of the nose of the plane.
 +
 +
; Thrust:
 +
 +
The mechanical force generated by the engine to move the airplane through the air.
 +
 +
; V-Tail:
 +
 +
V-Tail aircraft are planes that have only 2 stabilization surfaces (in the shape of a V) instead of a conventional horizontal and vertical stabilizers. In a V-Tail aircraft, the 2 control surfaces of the V-Tail work together to give elevator and rudder responses.
  
  
 
[[Category:Adventist Youth Honors Answer Book]]
 
[[Category:Adventist Youth Honors Answer Book]]

Revision as of 19:54, 1 August 2006

Template:Honor header

1. Build and successfully fly an airplane from a kit made of balsa wood and tissue paper, and rubber band or gas powered.

2. Build a balsa wood glider from a kit and observe its flying characteristics as related to variable positions of the wings.

Do It Yourself "Penny Glider" plans.

Do to an ordering mixup with our glider kit supplier, our club was forced to get creative to meet the glider requirement in this Airplane Modeling honor. The end result was that I designed a glider that could be made from stock pieces of balsa. The glider flew well for the students that made them, and the plans made for very cost effective kits. I found the most efficient way to use balsa sheets is to make 12 glider kits. I am publishing the plans here in the hope that other youth groups can make good use of them.

Stock pieces required.

One set of the following pieces will create twelve glider kits.

  • (3) 3" X 36" X 1/16" sheet
  • (4) 1/8" X 3/8" X 36"
  • (1) 1/8" X 1/8" X 36"

Other required supplies.

Wood glue / Hobby knifes

Ruler (Metal is best)

Water based sanding sealer - (I used Varathane Crystal Clear Waterborne thinned 50% with water)

150 grit sandpaper

Pencil / Hobby paint brushes

12 Pennies

Hot glue gun and glue

One copy of plan page printed for each student.

Glider Stock.jpg

Make the kits in advance

Cut the pieces from the stock to the sizes shown in the plan. Use a hobby knife and steel ruler.

Fuselage - Cut the ⅛” x ⅜” stock into 12” long sections to make 12 fuselages.

Wings - Cut 6 pieces 11” x 1½” from 2 of the 1/16” sheets to make 12 wings.

Wing Mounts - Cut ⅛” x ⅛” stock into 12 - 2½ ” sections.

Wing Mounts – Cut 24 - ¼” x 2½ ” parts for wing mounts from 1/16" sheet balsa.

Horizontal Stabilizer – Cut 12 - 3½” x 3/4” peritoneal stabilizers from 1/16" sheet balsa.

Vertical Stabilizer - Cut 12 - 1½” x 1” vertical stabilizers from 1/16" sheet balsa.

(ensure grain runs the long direction on all 1/16" sheet balsa pieces)

Optionally cut the tapered notches in the fuselage for the horizontal stabilizer, or leave this step for the students depending on level of students ability with hobby knifes.

Glider kits.jpg

Each kit will contain one wing, one fuselage, one horizontal stabilizer, one vertical stabilizer, and the wing mounting pieces. One single kit is pictured below.

Glider kit.jpg

Have the students follow steps 1 through 8 to build the kits.

Instructions:

  1. Cut out all pieces.
  2. Seal and sand all peices
  3. Assemble wing mount
  4. Glue wing to mount
  5. Mount stabilizers
  6. Use elastics to mount wing on fuselage
  7. Add penny to nose for weight, (use hot glue) and adjust wings front to back for best flight.
  8. Add cardstock alierons, rudder, and elevators if wanted.

The following pictures are provided for reference.

Wing and wing mount:

Glider Wing Mount.jpg

Stabilizers glued to fuselage:

Glider Stabilizers.jpg

Wing mounting with elastic bands:

Glider Wing Elastics.jpg

Finished Glider:

Glider Done.jpg

Plan Page.

Glider Plan Page.jpg

3. Make and successfully fly two different styles of airplanes using sheets of paper between eight (20.3 cm) and fourteen (35.6 cm) inches in width and length.

4. Define, locate, and explain the usage of the following basic items:

  • Fuselage
  • Wing
  • Aileron
  • Rudder
  • Horizontal stabilizer
  • Strut
  • Cockpit
  • Engine
  • Landing Gear
  • Propeller


Fuselage

The elongated body or frame of an airplane, any kind of frame or body. The central body of an airplane that is designed to accommodate the crew and passengers (or cargo).

Wing

Any surface used primarily for supporting an airplane inflight by forward motion.

Aileron

Ailerons are movable control surfaces that are present on the trailing edge of both the right and left wings of a plane. Each surface moves in opposite directions enabling a plane to roll right or left. For a plane to roll to the left, the left wing aileron moves upwards while the aileron on the right wing moves downwards.

Rudder

This is the term used to describe the part of the tail that moves back and forth. This movement causes the tail of a plane to move which then turns the plane.

Horizontal stabilizer
Strut

A diagnal brace going from the fuselage to the bottom of the wing consisting of a bar or rod used to support the wing on the airplane.

Cockpit

Compartment where the pilot sits while flying the aircraft.

Engine

The source of power to turn the propellor or turbines and generate thrust. Can be an internal cumbustion engine, jet engine, or in the case of an airplane model a rubber band engine.

Landing gear

An undercarriage that supports the weight of the plane when it is on the ground.

Propeller

The mechanical device attached to the engine that rotates to push against air and create thrust.

Dihedral

Dihedral is where the right and left wing tips are higher than the fuselage. More dihedral generally means that a plane will be more stable in the air, but will be more difficult to turn. Most planes require a bit of dihedral to fly well.

Elevator

Elevator is the term used to describe a plane's horizontal control surface on the tail. This surface enables a plane to pitch upwards or downwards. When an elevator surface moves upwards, the tail moves downwards (the nose of the plane then points up) and vice-versa. Without an elevator, it is hard to control the altitude of a plane as you can't control the rise and fall of the nose of the plane.

Thrust

The mechanical force generated by the engine to move the airplane through the air.

V-Tail

V-Tail aircraft are planes that have only 2 stabilization surfaces (in the shape of a V) instead of a conventional horizontal and vertical stabilizers. In a V-Tail aircraft, the 2 control surfaces of the V-Tail work together to give elevator and rudder responses.