The NAD Team has come up with a list of honors that can possibly be earned at home during the COVID-19 shut-down.
Check it out!
El liderazgo de la División Norteamericana he creado una lista de especialidades que posiblemente se pueden desarrollar en casa durante la cuarentena del COVID-19.
¡Búsquelo aquí!

Adventist Youth Honors Answer Book/Nature/Fungi

From Pathfinder Wiki
Jump to: navigation, search
Other languages:
English • ‎español

General Conference


Skill Level 2
Year of Introduction: 1937

IA logo.png
Investiture Achievement Connection: This Honor is related to the Investiture Achievement requirements for FRONTIER GUIDE Nature Study which require (as one of two options) an activity which meets Requirement #2 this Honor. This Honor is a popular choice for the Level 2 or 3 Nature Honor required of FRONTIER GUIDES.

1. Give the name of five classes of fungi and examples of each.

There are about 32 classes of fungi, not including subclasses. Here are some examples:

The chytrids, represents a group of primitive aquatic fungi. They are characterized by having reproductive cells can move themselves by using whip-like tails called flagella. Synchytrium endobioticum is a chytrid fungus that causes the potato wart disease or black Scab.

Batrachochytrium dendrobatidis, discovered in 1998 in Australia and Panama, and causes a disease that kills amphibians in large numbers and has been suggested as a principal cause for the worldwide amphibian decline. Outbreaks of the fungus were found responsible for killing much of the Kihansi Spray Toad population in its native habitat of Tanzania, as well as the extinction of the golden toad in 1989.

The zygomycetes, in phylum Zygomycota, are characterized by the formation of sexual spores called zygospores. The zygospores are not contained within a specialized fruiting body or sac. An example of a zygomycete is the common black bread mold, Rhizopus nigricans, which spreads over the surface of bread and other food sources, sending hyphae inward to absorb nutrients. In its asexual phase it develops bulbous black sporangia at the tips of upright hyphae, each containing hundreds of haploid spores. These fungi have many industrial uses including Rhizopus used in tofu production and Blakeslea trispora which is used to manufacture beta-carotene for dietary supplements and other uses.

Zygomycetes on solid media..png

Members of the Glomeromycota are also known as the arbuscular mycorhizal fungi (AMF). This type of fungi is found on the roots of about 80% of vascular plants, where it helps the plant capture nutrients from the soil. The tremendous advances in research on mycorrhizal physiology and ecology over the past 40 years have led to a greater understanding of the multiple roles of AMF in the ecosystem. This knowledge is applicable to human endeavors of ecosystem management, ecosystem restoration, and agriculture.

Gigaspora margarita.JPG

They are also called the “sac fungi” because their sexual spores (ascospores) are enclosed in tube-like sacs known as asci. This group is of particular relevance to humans as sources for medicinally important compounds, such as antibiotics and for making bread, and cheese, but also as pathogens of humans and plants, and for making alcoholic beverages. Familiar examples of sac fungi include morels, truffles, brewer's yeast and baker's yeast, Dead Man's Fingers, cup fungi, and the majority of lichens (loosely termed "ascolichens") such as Cladonia."

Sarcoscypha coccinea 74716.jpg

This class includes the fungi commonly called mushrooms including the common fairy-ring mushroom, shiitake, enoki, oyster mushrooms, fly agarics and other amanitas, magic mushrooms like species of Psilocybe, paddy straw mushrooms, shaggy manes, puffballs etc.

Chlorophyllum brunneum (Shaggy Parasol) W IMG 1234.jpg

A fungi broadly known as earth tongues. The ascocarps of most species in the family Geoglossaceae are terrestrial and are generally small, dark in color, and club-shaped with a height of 2–8 cm. The ascospores are typically light-brown to dark-brown and are often multiseptate. Other species of fungi have been known to parasitize ascocarps. Earth tongues are commonly found in soil or among rotting vegetation. In North America, they are commonly found in coniferous woodland, broad-leaved woodland and mixed woodland habitats, whereas in Europe they are commonly found in grassland habitats.

2011-09-16 Geoglossum glutinosum Pers 192121.jpg

All fungi lack chlorophyll, the substances that allows plants to make their own food through photosynthesis. Instead, fungi get food from decaying plant or animal matter, through symbiosis or in the case of parasitic fungi, from living plants or animals. While we often think of mushrooms as a synonym for fungi, there are only about 10-20,000 species of mushrooms out of an estimated 1,500,000 species of fungi, the majority being inconspicuous or microscopic. Only about 80,000 species of fungi are named. (Source: The North American Guide to Common Poisonous Plants and Mushrooms, Turner & von Aderkas, pg 63)

2. Identify fifteen common fungi of your locality. Draw or photograph them from live specimens.

The best way to approach this requirement like all similar nature honor requirements, is to go out looking for fungi, and then try to figure out what you have found. This is far more effective than studying your field guide, deciding what you want to look for, and then going out for a look while walking past other fungi you could be identifying. Also remember the requirement says fungi, so open your eyes to fungi other then mushrooms. It should be easy to find, photograph and identify 15 common fungi if you take your camera whenever you are out walking or hiking anyway. Fungi help decompose rotting stumps and logs, and like moisture, so search appropriately. Look up too, not just down, for some fungi grow on the sides of trees. In the kitchen and garden you might also look for black mold (will mom let you leave some bread out?) and yeasts.

For identify fungi outdoors, you will need a field guide (book or online). The field guide you select should cover the area where you are looking for fungi. For example, a field guide to the mushrooms of Australia is not going to help you very much if you're looking for fungi in North America.

Once you have a field guide, take it, plus your camera or sketch pad, and go out looking for fungi. When you find one, try to figure out what it is using your field guide. It is difficult to distinguish the various species of fungi from photographs alone, so you will want to identify it on the spot. Many times the identification of a species will rely on an obscure feature such as the gills on the underside of a mushroom. Chances are, if you attempt to identify the fungus later from a snapshot, you will not have captured one of the critical identifying features, or the feature was not sufficiently in focus. That is why you will want to make an identification when you have direct access to the specimen. If you find yourself looking at an interesting specimen and do not have your field guide with you, by all means, sketch it out and take photos. There is always the chance that you will be able to identify it later. Take special notice of the gills (if there are any), how they attach to the stem, and any "fringes" around the stem.

3. Name three important fungi and tell what their value is.

Here are 5 example fungi used directly for food, as an agent to make food and alcohol, for industrial purposes, for medicine, and as a biological insecticide in farming.

Agaricus bisporus is an edible basidiomycete mushroom native to grasslands in Europe and North America. When immature and white, this mushroom may be known as common mushroom, button mushroom, white mushroom, cultivated mushroom, table mushroom, and champignon mushroom. When immature and brown, this mushroom may be known variously as Swiss brown mushroom, Roman brown mushroom, Italian brown, Italian mushroom, cremini or crimini mushroom, brown cap mushroom, or chestnut mushroom. When mature, it is known as Portobello mushroom. A. bisporus is cultivated in more than seventy countries, and is one of the most commonly and widely consumed mushrooms in the world. When people think of a mushroom, this is usually the mushroom that comes to mind first.
Saccharomyces cerevisiae
Perhaps the most useful yeast, having been instrumental to baking as well as wine making and brewing since ancient times. It is the principal source of nutritional yeast and yeast extract ahd is believed to have been originally isolated from the skin of grapes.
Aspergillus niger
Better known as A. niger or black mold it commonly spoils fruits and other foods, but this fungus has beneficial uses too. It is used to make citric acid commercially, and it also can be used to make gluconic acid. Both are important food additives. Many useful enzymes are produced using industrial fermentation of A. niger. For example, A. niger glucoamylase is used in the production of high fructose corn syrup, and pectinases are used in cider and wine clarification. Alpha-galactosidase, an enzyme that breaks down certain complex sugars, is a component of Beano and other products that decrease flatulence It is used for food safety as a challenge organism for cleaning validation studies performed within sterile manufacturing facilities.
Penicillium chrysogenum
This is the organism that makes penicillin, from which the majority of the large class of beta-lactam antibiotics are derived. Penicillin and its derivatives have saved countless lives since they were discovered and isolated, starting in the 1940s.
Beauveria bassiana is used as a biological insecticide to control a number of pests such as termites, thrips, whiteflies, aphids and different beetles. Its use in the control of bedbugs and malaria-transmitting mosquitoes is under investigation. Other fungi hold promise for their ability to attack selected insects without hurting other organisms or the plants that the farmer is trying to protect. Here are grasshoppers killed by B bassiana.


4. Tell the life history of one example of each of the following:

a. Rust

Rust infection

Rust occurs on many species of plant, but in most cases any one species of rust can only infect one species of plant. The following describes the infection process of asexual spores.

Spore Attachment

When a rust spore lands on a plant surface it needs to attach to it, or it would simply be washed off. First, weak, hydrophobic interactions are formed between the spore and the plant cell surface. Then unknown signals cause the production of a substance called adhesin. This will stick the spore irreversibly to the plant surface. Once attached, the spore will germinate.

Germ Tube Elongation

Rust fungi penetrate the plant by using the natural pores on the underside of a leaf, but first the growing germ tube must locate it. The germ tube grows in a random manner until it reaches a ridge. At this point it will start to grow perpendicular to the ridge, greatly increasing its chances of locating a pore (called a stomata).

Appresorium Formation

The stomata is the site of a structure called an appresorium that functions to both firmly anchor the fungus and aid in penetration. From the appresorium an infection peg grows down into the plant and between the leaf cells.

The Haustoria

Rust fungi gain their nutrients from living cells. This requires a specialized penetration of the fungi into a living plant cell called a haustoria. This develops from a haustorial mother cell. The plant cell membrane surrounds the main haustorial body. An iron- and phosphorus-rich neck band bridges the plant and fungal membranes and acts as a seal preventing the escape of nutrients into the plant. The rust fungi will then continue to grow and invade the plant until it is ready to make new spores.

b. Mold

Penicillium chrysogenum is a mold that is widely distributed in nature, and is often found living on foods and in indoor environments. It is the source of several β-lactam antibiotics, most significantly penicillin.

Like the many other species of the genus Penicillium, P. chrysogenum reproduces by forming dry chains of spores (or conidia) from brush-shaped stalks called conidiophores. The conidia are typically carried by air currents to new colonization sites. In P. chrysogenum the conidia are blue to blue-green, and the mold sometimes exudes a yellow pigment. However, P. chrysogenum cannot be identified based on color alone. Observations of morphology and microscopic features are needed to confirm its identity.

c. Mushroom

Nidulariaceae - Bird's nest fungi

Bird's nest fungi are fungi with fruiting bodies that look like egg-filled birds' nests and make up the order the Nidulariales.

They are often seen on decaying wood and in soils enriched with wood chips or bark mulch. Cyathus striatus is probably the most commonly encountered species in the temperate northern hemisphere.

The "eggs" are spore cases called peridioles. Peridioles contain glebal tissue, basidia (a microscopic, spore-producing structure), and basidiospores (a reproductive spore), and are dispersed by rain. The nests are splash cups. When a raindrop hits one at the right angle the walls are shaped such that the eggs are expelled a good distance from the nest. Each egg has a sticky trailing thread attached to it. If that thread encounters a twig on its flight the egg will swing around and wrap itself around the twig. The spores can then germinate there and start the life cycle over again.

d. Yeast

The yeast cell's life cycle.
1. Budding
2. Conjugation
3. Spore

Yeasts have asexual and sexual reproductive cycles; however the most common mode of vegetative growth in yeast is asexual reproduction by budding or fission. Here a small bud, or daughter cell, is formed on the parent cell. The nucleus of the parent cell splits into a daughter nucleus and migrates into the daughter cell. The bud continues to grow until it separates from the parent cell, forming a new cell. The bud can develop on different parts of the parent cell depending on the genus of the yeast.

Under high stress conditions haploid cells will generally die, however under the same conditions diploid cells (cells containing a full set of chromosomes) can undergo sporulation, entering sexual reproduction (meiosis) and producing a variety of haploid spores (which have only a half-set of chromosomes), which can go on to mate (conjugate), reforming the diploid.

5. Identify five fungus plant diseases.

Fusarium oxysporum

Fusarium oxysporum, also referred to as Agent Green, is a fungus that causes Fusarium wilt disease in more than a hundred species of plants. It does so by colonizing the water-conducting vessels (xylem) of the plant. As a result of this blockage and breakdown of xylem, symptoms appear in plants such as leaf wilting, yellowing and eventually plant death.

Interest in Fusarium oxysporum as a pesticide was first raised after the discovery in the 1960s that it was the causative agent in the destruction of the Hawaiian coca population.

The United States government was involved in a controversial program to use Fusarium oxysporum for the eradication of coca in Colombia and other Andean countries, but these plans were cancelled by president Bill Clinton who was concerned that the unilateral use of a biological agent would be perceived by the rest of the world as biological warfare. The Andean nations have since banned its use throughout the region. Use of biological agents to kill crops is potentially illegal under the Biological Weapons Convention.

Downy mildew

Downy mildew (left) and Powdery mildew (right)

Downy mildew refers to any of several types of oomycete that infect plants. In commercial agriculture, they are a particular problem for growers of crucifers, grapes and vine-type vegetables.

The prime example is Peronospora farinosaas featured in NCBI-Taxonomy and HYP3.

Cucurbit downy mildew (caused by Pseudoperonospora cubensis) is specific to cantaloupe, cucumber, pumpkin, squash, watermelon and other members of the gourd family. The disease is one of the most important diseases of cucurbits worldwide.

Botrytis (Leaf blight, Neck rot)


Botryotinia is a genus of ascomycete fungi causing several plant diseases. The anamorphs (asexual reproductive stage) of Botryotinia are mostly included in the imperfect fungi genus Botrytis. The genus contains 22 species and one hybrid.

Plant diseases caused by Botryotinia species appear primarily as blossom blights and fruit rots but also as leaf spots and bulb rots in the field and in stored products. The fungi induce host-cell death resulting in progressive decay of infected plant tissue, whence they take nutrients.

Alternaria alternata

Alternaria alternata

Alternaria alternata has been recorded infecting over 380 host species. It is an opportunistic pathogen on numerous hosts causing leaf spots, rots and blights on many plant parts. It also causes upper respiratory tract infections in AIDS patients and asthma in people with sensitivity.


Corn smut

The smuts are fungi, mostly Ustilaginomycetes (of the class Teliomycetae, subphylum Basidiomycota), that cause plant disease.

Smuts affect grasses, notably including cereal crops such as maize. They initially attack the plant's reproductive system, forming galls which darken and burst, releasing fungal spores which infect other plants nearby.

A smut infestation is controlled by removing and destroying the infected plants. In Agriculture, this process is known as destruction of the initial inoculum.

There are several types of smut including:

Magnaporthe grisea

Lesions on rice leaves caused by infection with M. grisea

Magnaporthe grisea, also commonly known as rice blast fungus, rice rotten neck, rice seedling blight, blast of rice, oval leaf spot of graminea, pitting disease, ryegrass blast, and johnson spot, is a plant-pathogenic fungus that causes an important disease affecting rice. It can also infect a number of other agriculturally important cereals including wheat, rye, barley, and pearl millet causing diseases called blast disease or blight disease. M. grisea causes economically significant crop losses annually, each year it is estimated to destroy enough rice to feed more than 60 million people. The fungus is known to occur in 85 countries worldwide.

6. Know what safety precautions to observe when handling fungi.


Harvesting wild mushrooms is an age-old practice and remains an important economic activity around the world. However, there are poisonous mushrooms that look much like edible mushrooms. Be sure to have your pick checked by an experienced mushroom expert or buyer before consuming anything you pick. Better yet, don't pick and eat wild mushrooms at all (unless you are a trained professional).

According to the excellent book The North America Guide to Common Posionous Plants and Mushrooms, there are about 100 known poisonous species out of about 5000 named species of mushrooms in the United States. One third to one half of mushroom taxa in the USA remain unidentified and many of the identifed species are not gathered for food and have not been tested for toxicity. The situation in other parts of the world is even worse, where there is often a very limited understanding and no local guides to what mushrooms grow there. Relying on a North American or European guidebook in another region could prove deadly since toxicity levels between similar looking mushrooms vary around the world.

Also be aware that mushrooms can be introduced to new regions, often unwittingly brought in soil with nursery stock.

If you suspect mushroom poisoning (which may manifest hours after consuming mushrooms), seek immediate medical attention. Bring a sample of the mushroom to the hospital and call a poison control center. Globally, over 50% of mushroom poisonings are fatal, but with good medical care and prompt attention over 90% of victims recover in North America.


Flood conditions contribute to the growth and transmission of many kinds of fungi, some of which can cause sickness. Cleanup workers are at increased risk of exposure to airborne fungi and their spores because they often handle moldy building materials, decaying vegetable matter, rotting waste material, and other fungus-contaminated debris. The fungal material is carried into the respiratory tract when airborne particles are inhaled.

There are many different kinds of fungi, including mildew, molds, rusts, and yeasts. Most of these are harmless, but some can cause respiratory and other disorders when workers inhale or come into contact with fungi. Inhalation is the route of exposure of most concern to flood cleanup workers. The recommendations below offer strategies for workers renovating flooded buildings, homes, and structures to protect themselves while handling building materials that are visibly contaminated with fungi.

For workers cleaning up flooded buildings, homes, and other structures, excessive moisture or water accumulation indoors will encourage the growth of the fungi that are already present. Some fungi have the potential to cause adverse health effects such as allergic responses and asthma attacks. Individuals who are sensitive to molds may have signs and symptoms of allergic reactions such as nasal stuffiness, eye irritation, and wheezing. These individuals should minimize fungal exposure by wearing respirators, gloves, and eye protection. They should also seek to eliminate fungi, as described below. In addition, repeated or prolonged contact of the skin with flood water and continuous sweating can lead to fungal skin infections. These can be minimized or avoided by washing the skin with warm, soapy water and keeping it as dry as possible.

If a person experiences severe allergic or skin symptoms, or severe flu-like symptoms, he or she should seek medical advice. A health care provider can determine whether medication or any other precautions are necessary.

Tips to Remember

For anyone who may be exposed to mold and fungi:

  • Avoid breathing dust (fungal spores) generated by moldy building materials, crops, and other materials.
  • Consider using a disposable respirator as a minimum when working with moldy or damp hay, grain, compost, or building materials.
  • Consider discarding all water damaged materials. Articles that are visibly contaminated with mold should be discarded. When in doubt, throw it out.
  • Surfaces that have a light covering of mold should be scrubbed with warm, soapy water and rinsed with a disinfectant made of 1/2 cup liquid household bleach mixed into one gallon of water.
  • CAUTION: Do not mix bleach with other cleaning products that contain ammonia.
  • After working with mold-contaminated materials, wash thoroughly, including the hair, scalp, and nails.
  • If the safety of food or beverage is questionable, throw it out. Only drink safe drinking water that has been bottled, boiled, or treated until there is confirmation that the community water supply is safe for consumption.

For additional information concerning fungi, health effects, and addressing flood damaged materials, please visit OSHA’s Safety and Health Topics web page on Molds and Fungi at: