Difference between revisions of "AY Honors/Physics/Answer Key"

From Pathfinder Wiki
< AY Honors‎ | PhysicsAY Honors/Physics/Answer Key
(Use math markup)
 
m (Numbered the requirements)
Line 1: Line 1:
 
{{honor_header|2|1989|Health & Science<br>General Conference<br>2001 Edition}}
 
{{honor_header|2|1989|Health & Science<br>General Conference<br>2001 Edition}}
  
==Define the following: ==
+
==1. Define the following: ==
===Physics ===
+
===a. Physics ===
 
A branch of science that deals with matter, energy, motion, charge, and force.
 
A branch of science that deals with matter, energy, motion, charge, and force.
  
 
Physics uses a number of tools such as a balance, meter or ruler, clock or stop watch. Physicist also use more complicated tools as they look at more complicated events. The most important tool of physics is mathematics. You can think of Mathematis as the language of physics.
 
Physics uses a number of tools such as a balance, meter or ruler, clock or stop watch. Physicist also use more complicated tools as they look at more complicated events. The most important tool of physics is mathematics. You can think of Mathematis as the language of physics.
  
===Mass===
+
===b. Mass===
 
A quantity of matter related to weight by Newton's second law of motion represented mathematically as <math>F=m \times A</math>
 
A quantity of matter related to weight by Newton's second law of motion represented mathematically as <math>F=m \times A</math>
  
===Work===
+
===c. Work===
 
A measure of energy. If we push a heavy load, then the work that we do is how hard we push the load times how far we push the load.
 
A measure of energy. If we push a heavy load, then the work that we do is how hard we push the load times how far we push the load.
  
 
<math>Work=Force \times distance</math>
 
<math>Work=Force \times distance</math>
  
===Force===
+
===d. Force===
  
 
An influence on an object that causes the object to move or change direction.
 
An influence on an object that causes the object to move or change direction.
  
===Power===
+
===e. Power===
 
How much energy expended per unit of time. If you can do lots of work quickly, then you are using more power.
 
How much energy expended per unit of time. If you can do lots of work quickly, then you are using more power.
  
 
<math>Power= \frac{(Work\ done)}{(time\ it\ took\ to\ do\ the\ work)}</math>
 
<math>Power= \frac{(Work\ done)}{(time\ it\ took\ to\ do\ the\ work)}</math>
  
===Potential energy===
+
===f. Potential energy===
 
The energy of an object based on its relation to other objects. For example if I lift a ball above the ground by a given distance, then the ball has the potential to fall the distance that I've raised it. The potential energy of a ball can be measured by measuring how high you raise the ball against the force of gravity on the mass of the ball.
 
The energy of an object based on its relation to other objects. For example if I lift a ball above the ground by a given distance, then the ball has the potential to fall the distance that I've raised it. The potential energy of a ball can be measured by measuring how high you raise the ball against the force of gravity on the mass of the ball.
  
Line 33: Line 33:
 
g is the acceleration of gravity and is 9.8 m/sec/sec or 32 feet/sec/sec
 
g is the acceleration of gravity and is 9.8 m/sec/sec or 32 feet/sec/sec
  
===Kinetic energy ===
+
===g. Kinetic energy ===
  
 
The amount of energy that an object has based on its motion relative to other objects. Kinetic energy in it's simplest form is related to the speed of an object in relation to the observer. Kinetic energy in it's most complex form can be heat
 
The amount of energy that an object has based on its motion relative to other objects. Kinetic energy in it's simplest form is related to the speed of an object in relation to the observer. Kinetic energy in it's most complex form can be heat
Line 43: Line 43:
 
<math>Kinetic\ energy = 0.5 \times (Mass\ of\ object) \times (Velocity\ of\ object)^2 </math>
 
<math>Kinetic\ energy = 0.5 \times (Mass\ of\ object) \times (Velocity\ of\ object)^2 </math>
  
===Weight ===
+
===h. Weight ===
=== Matter===
+
===i. Matter===
=== Inertia ===
+
===j. Inertia ===
===Friction===
+
===k. Friction===
===Wave ===
+
===l. Wave ===
===Center of gravity===  
+
===m. Center of gravity===  
===Exponential notation ===
+
===n. Exponential notation ===
===Absolute zero===
+
===o. Absolute zero===
===Fulcrum===
+
===p. Fulcrum===
  
==What is the scientific method? How can the scientific method be used to study the Bible? ==
+
==2. What is the scientific method? How can the scientific method be used to study the Bible? ==
==What is a controlled experiment? ==
+
==3. What is a controlled experiment? ==
==Explain the terms in Albert Einstein's <math>E=mc^2</math> equation. ==
+
==4. Explain the terms in Albert Einstein's <math>E=mc^2</math> equation. ==
== What units of measure for mass, length, and time are used where you live? ==
+
==5. What units of measure for mass, length, and time are used where you live? ==
==What units of measure are used for time prophecy in the Bible? What is the chapter and verse where they can be found? ==
+
==6. What units of measure are used for time prophecy in the Bible? What is the chapter and verse where they can be found? ==
==List Newton's three laws of motion. ==
+
==7. List Newton's three laws of motion. ==
==Using a table cloth and several heavy books, demonstrate Newton's first law of motion. ==
+
==8. Using a table cloth and several heavy books, demonstrate Newton's first law of motion. ==
==Using an air-filled balloon, demonstrate Newton's third law of motion. ==
+
==9. Using an air-filled balloon, demonstrate Newton's third law of motion. ==
== Demonstrate Galileo's falling body experiment by dropping two plastic beverage bottles (one full of water, the other half full) at the same time from a height of seven feet. Record the results and draw a spiritual application from this experiment. ==
+
==10. Demonstrate Galileo's falling body experiment by dropping two plastic beverage bottles (one full of water, the other half full) at the same time from a height of seven feet. Record the results and draw a spiritual application from this experiment. ==
==Demonstrate the mechanical advantage of levers by pulling a large nail, driven deeply into a board, using only a hammer. Pull a second nail using a hammer and a small block of wood, located near the nail, under the head of the hammer. Note the difference in force required to pull the nail with different positions on the hammer on the block (fulcrum) and draw a spiritual application from this experiment. ==
+
==11. Demonstrate the mechanical advantage of levers by pulling a large nail, driven deeply into a board, using only a hammer. Pull a second nail using a hammer and a small block of wood, located near the nail, under the head of the hammer. Note the difference in force required to pull the nail with different positions on the hammer on the block (fulcrum) and draw a spiritual application from this experiment. ==
 +
 
 +
==References==
  
 
--[[User:Rodneyeast|Rodneyeast]] 14:06, 23 October 2006 (UTC)
 
--[[User:Rodneyeast|Rodneyeast]] 14:06, 23 October 2006 (UTC)
  
 
[[Category:Adventist Youth Honors Answer Book]]
 
[[Category:Adventist Youth Honors Answer Book]]

Revision as of 20:36, 23 October 2006

Template:Honor header

1. Define the following:

a. Physics

A branch of science that deals with matter, energy, motion, charge, and force.

Physics uses a number of tools such as a balance, meter or ruler, clock or stop watch. Physicist also use more complicated tools as they look at more complicated events. The most important tool of physics is mathematics. You can think of Mathematis as the language of physics.

b. Mass

A quantity of matter related to weight by Newton's second law of motion represented mathematically as [math]\displaystyle{ F=m \times A }[/math]

c. Work

A measure of energy. If we push a heavy load, then the work that we do is how hard we push the load times how far we push the load.

[math]\displaystyle{ Work=Force \times distance }[/math]

d. Force

An influence on an object that causes the object to move or change direction.

e. Power

How much energy expended per unit of time. If you can do lots of work quickly, then you are using more power.

[math]\displaystyle{ Power= \frac{(Work\ done)}{(time\ it\ took\ to\ do\ the\ work)} }[/math]

f. Potential energy

The energy of an object based on its relation to other objects. For example if I lift a ball above the ground by a given distance, then the ball has the potential to fall the distance that I've raised it. The potential energy of a ball can be measured by measuring how high you raise the ball against the force of gravity on the mass of the ball.

Potential energy of the ball (E) = Mass of ball (m) * Accelleration of gravity (g) * height we rase the ball (h)

We write this [math]\displaystyle{ E=mgh }[/math]

g is the acceleration of gravity and is 9.8 m/sec/sec or 32 feet/sec/sec

g. Kinetic energy

The amount of energy that an object has based on its motion relative to other objects. Kinetic energy in it's simplest form is related to the speed of an object in relation to the observer. Kinetic energy in it's most complex form can be heat

The kinetic energy of a moving ball can be measured by knowing 2 things about the object 1) The mass of the object. (Determined using a scale.) 2) The velocity of the object (Time how long it takes to travel a given distance)

[math]\displaystyle{ Kinetic\ energy = 0.5 \times (Mass\ of\ object) \times (Velocity\ of\ object)^2 }[/math]

h. Weight

i. Matter

j. Inertia

k. Friction

l. Wave

m. Center of gravity

n. Exponential notation

o. Absolute zero

p. Fulcrum

2. What is the scientific method? How can the scientific method be used to study the Bible?

3. What is a controlled experiment?

4. Explain the terms in Albert Einstein's [math]\displaystyle{ E=mc^2 }[/math] equation.

5. What units of measure for mass, length, and time are used where you live?

6. What units of measure are used for time prophecy in the Bible? What is the chapter and verse where they can be found?

7. List Newton's three laws of motion.

8. Using a table cloth and several heavy books, demonstrate Newton's first law of motion.

9. Using an air-filled balloon, demonstrate Newton's third law of motion.

10. Demonstrate Galileo's falling body experiment by dropping two plastic beverage bottles (one full of water, the other half full) at the same time from a height of seven feet. Record the results and draw a spiritual application from this experiment.

11. Demonstrate the mechanical advantage of levers by pulling a large nail, driven deeply into a board, using only a hammer. Pull a second nail using a hammer and a small block of wood, located near the nail, under the head of the hammer. Note the difference in force required to pull the nail with different positions on the hammer on the block (fulcrum) and draw a spiritual application from this experiment.

References

--Rodneyeast 14:06, 23 October 2006 (UTC)