Difference between revisions of "AY Honors/Optics/Answer Key/es"

From Pathfinder Wiki
< AY Honors‎ | OpticsAY Honors/Optics/Answer Key/es
(Created page with "{{clear}}")
 
(35 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<languages /><br />
+
{{HonorSubpage}}
<noinclude></noinclude>
 
{{honor_desc
 
|stage=00
 
|honorname=Óptica
 
|skill=2
 
|year=1962
 
|category=Salud y Ciencia
 
|authority=Asociación General
 
|insignia=Optics Honor.png
 
}}
 
 
 
 
 
 
 
<noinclude></noinclude>
 
 
<section begin="Body" />
 
<section begin="Body" />
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=1}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=1}}
Line 21: Line 7:
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=1a}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=1a}}
 
<noinclude></noinclude>
 
<noinclude></noinclude>
 +
 +
{{clear}}
  
 
{{clear}}
 
{{clear}}
Line 57: Line 45:
 
{{clear}}
 
{{clear}}
  
::[[Image:Pincushion_distortion.svg|200px]]
+
{{clear}}
  
 
<noinclude></noinclude>
 
<noinclude></noinclude>
Line 106: Line 94:
 
<!-- 2. Explicar cómo se comporta la luz cuando choca o atraviesa agua, aceite, feldespato y un espejo. -->
 
<!-- 2. Explicar cómo se comporta la luz cuando choca o atraviesa agua, aceite, feldespato y un espejo. -->
  
{{clear}}
+
{{clear}}
  
{{clear}}
+
{{clear}}
  
{{clear}}
+
{{clear}}
  
 
{{clear}}
 
{{clear}}
Line 120: Line 108:
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=3}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=3}}
 
<noinclude></noinclude>
 
<noinclude></noinclude>
<!-- 3. Name and draw diagrams of three kinds of positive lenses and three kinds of negative lenses. -->
+
<!-- 3. Nombrar y dibujar diagramas de tres tipos de lentes positivas y tres de lentes negativos. -->
  
 
{{clear}}
 
{{clear}}
Line 128: Line 116:
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=4}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=4}}
 
<noinclude></noinclude>
 
<noinclude></noinclude>
<!-- 4. What should be the minimum distance of light source from the lens when testing for focal length? -->
+
<!-- 4. ¿Cuál debe ser la mínima distancia de la fuente de luz de un lente cuando se prueba la longitud focal? -->
[[Image:Lens calc.png|thumb|450px|Measuring the focal point]]
 
It depends on how accurately you want to measure the focal length.  The focal length can be determined by the equation:
 
  
 
{{clear}}  
 
{{clear}}  
Line 142: Line 128:
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=5}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=5}}
 
<noinclude></noinclude>
 
<noinclude></noinclude>
<!-- 5. Find the focal length of at least four lenses, one being a negative lens. -->
+
<!-- 5. Encontrar la longitud focal de al menos cuatro lentes, uno debe ser una lente negativa. -->
[[Image:FocalLength.jpg|thumb|400px|Finding the focal length of a positive lens]]
 
===Positive Lens===
 
Set a ruler on end on a work surface (a table, sidewalk, or a wood board). Using a bright light (such as the sun) as the light source, hold the lens against the ruler and slide it up and down the ruler until the light is focused on the work surface.  The point on the ruler that the focused lens touches is to be recorded as the Focal Length for that lens.
 
{{clear}}
 
===Negative Lens===
 
[[Image:Sistema afocale 2.png]]
 
{{clear}}
 
Measuring the focal length of a negative lens is more difficult because light going through it does not converge to form an image.  Instead, you will need to place a positive lens between the light source and the negative lens.  Move the lenses and screen around until the light is focused.
 
  
 
{{clear}}
 
{{clear}}
Line 170: Line 148:
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=6}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=6}}
 
<noinclude></noinclude>
 
<noinclude></noinclude>
<!-- 6. Explain by diagram why an image from a positive lens makes an image reversed and inverted. -->
+
<!-- 6. Explicar por medio de un diagrama por qué una imagen positiva de un lente hace que una imagen se vea invertida. -->
  
 
{{clear}}
 
{{clear}}
Line 180: Line 158:
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=7}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=7}}
 
<noinclude></noinclude>
 
<noinclude></noinclude>
<!-- 7. Show with diagrams how a prism works. State the angles at which the colors appear and disappear. -->
+
<!-- 7. Mostrar con diagrama cómo funciona un prisma. Mencionar los ángulos que los colores aparecen y desaparecen. -->
[[Image:Dispersion_prism.jpg|thumb|200px‎]]
 
  
 
{{clear}}
 
{{clear}}
Line 191: Line 168:
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=8}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=8}}
 
<noinclude></noinclude>
 
<noinclude></noinclude>
<!-- 8. Show and demonstrate what happens when light strikes one-way glass. -->
+
<!-- 8. Demostrar lo que ocurre cuando la luz golpea en un vidrio de un solo sentido (opaco o semitransparente). -->
  
 
{{clear}}
 
{{clear}}
  
The glass is coated with (or in some cases encases a layer of) a very thin almost transparent layer of metal (generally aluminum) to enhance its reflective nature. The result is what appears to be a mirror from one side, and tinted glass from the other. A viewer in the brightly lit area has difficulty seeing into the darkened room, through what appears to be a mirror.
+
{{clear}}
  
To take full advantage of the partially mirrored surface, the target side should be brightly lit, to obscure any hint of light coming through the glass from the viewer's side. The darkened room is only completely obscured when it is in complete darkness. Sometimes a darkened curtain or a double door type vestibule is used to keep the viewers side darkened.
+
{{clear}}
  
===Uses===
+
{{clear}}
[[Image:Teleprompter schematic.svg|right|350px|thumb|One-Way Glass (4) used in a teleprompter to reflect a script.]]
 
One-way glass is used for:
 
* providing security, through covert viewing, of public spaces.
 
* for the protection of covert camera
 
* for some police interrogation rooms.
 
* The use of one-way glass is also apparent in the broadcast television where persons read from a script while seemingly looking directly at the camera. This effect is achieved where the camera is the viewer looking through the glass, upon which the prompt or script is also reflected for the subject to read.
 
  
 
<noinclude></noinclude>
 
<noinclude></noinclude>
Line 211: Line 182:
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=9}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=9}}
 
<noinclude></noinclude>
 
<noinclude></noinclude>
<!-- 9. Construct one optical instrument using mirrors or lenses, such as a periscope, a slide or opaque projector, or a simple telescope. -->
+
<!-- 9. Construir un instrumento óptico usando espejos o lentes, como un periscopio, una diapositiva o proyector de opacos o un simple telescopio. -->
===Periscope===
 
[[Image:Simpleperiscopes.png|thumb|350px|right|'''Principle of the periscope.'''<br>
 
'''A''' - Periscope using two plane mirrors.<br>
 
''' B''' - Periscope using two right–angled prisms.<br>
 
'''1 - 2''' - Plane mirrors.<br>
 
'''3 - 4''' - Right–angled prisms.<br>
 
'''5 - 6'''  - Observer eye.<br>
 
'''7 - 8''' - Periscope tube.<br>
 
'''H''' - Periscope optical height.<br>
 
'''Different types of periscopes:'''<br>
 
Lens periscopes. [http://commons.wikimedia.org/wiki/File:Periscope_1.png]<br>Handheld periscope. [http://commons.wikimedia.org/wiki/File:Handheld_periscope.png]<br> Submarine periscope.[http://commons.wikimedia.org/wiki/File:Attack_periscope.png]]]
 
A periscope is an instrument for observation from a concealed position. In its simplest form it is a tube in each end of which are mirrors set parallel to each other and at an angle of 45° with a line between them.
 
  
A periscope may be used as a toy or for seeing over people's heads in a crowd. This form of periscope, with the addition of two simple lenses, was used for observation purposes in the trenches during World War I.
+
{{clear}}
  
A simple periscope can be made from two small, flat mirrors and a rectangular box (such as those in which aluminum foil or wax paper are packaged).  Hot melt glue and strips of cardboard can be used to hold the mirrors in place.
+
{{clear}}
  
 
{{clear}}
 
{{clear}}
  
===Slide Projector===
 
[[Image:Diaprojektor beleuchtungssystem IMGP1044.jpg|thumb|600px|Inside a slide projector]]
 
 
{{clear}}
 
{{clear}}
A slide projector is an opto-mechanical device to view photographic slides. It has four main elements: a fan-cooled electric light bulb or other light source, a reflector and "condensing" lens to direct the light to the slide, a holder for the slide and a focusing lens. A flat piece of heat absorbing glass is often placed in the light path between the condensing lens and the slide, to avoid damaging the latter. This glass transmits visible wavelengths but absorbs infrared. Light passes through the transparent slide and lens, and the resulting image is enlarged and projected onto a perpendicular flat screen so the audience can view its reflection.
 
===Opaque Projector===
 
[[Image:Episcope.jpg|right|thumb|200px|An episcope which was used in a University of Cambridge lecture hall in the late 1800s]]
 
The '''opaque projector''', '''epidioscope''', '''epidiascope''' or '''episcope''' is a device which displays opaque materials by shining a bright lamp onto the object from above. A system of mirrors, prisms and/or imaging lenses is used to focus an image of the material onto a viewing screen. Because they must project the reflected light, opaque projectors require brighter bulbs and larger lenses than overhead projectors. Care must be taken that the materials are not damaged by the heat generated by the light source. Opaque projectors are not as common as the modern "overhead".
 
  
Opaque projectors are typically used to project images of book pages, drawings, mineral specimens, leaves, etc. They have been produced and marketed as artists’ enlargement tools to allow images to be transferred to surfaces such as prepared canvas, or for lectures and discourses.
 
 
{{clear}}
 
{{clear}}
  
===Refracting Telescope===
 
[[Image:Kepschem2.jpg|thumb|500px|Refracting telescope]]
 
All refracting telescopes use the same principles. The combination of an objective lenses (1) and some type of eyepiece (2) is used to gathered more light than the human eye could collect on its own, focused it (5), and present the viewer with a brighter, clearer, and magnified virtual image (6). The objective in a refracting telescope refracts or bends light. This refraction causes parallel light rays to converge at a focal point; while those which were not parallel converge upon a focal plane. Refracting telescopes can come in many different configurations to correct for image orientation and types of aberration. Because the image was formed by the bending of light, or refraction, these telescopes are called refracting telescopes or refractors.
 
 
{{clear}}
 
{{clear}}
  
===Reflecting Telescope===
 
[[Image:Newtontelescope.png|thumb|right|300px|'''Diagram of  Newtonian reflector''']]
 
[[Image:Newtonian.PNG]]
 
 
{{clear}}
 
{{clear}}
In this diagram, light enters the telescope tube from the left and strikes the primary mirror (which is concave).  Light is then focused onto the secondary mirror mounted on a set of struts, and is then reflected out the side of the tube to the eyepiece.
 
  
 
<noinclude></noinclude>
 
<noinclude></noinclude>
Line 257: Line 202:
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=10}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=10}}
 
<noinclude></noinclude>
 
<noinclude></noinclude>
<!-- 10. Explain what is meant by the term 6x35 and 7x50 as applied to binoculars. -->
+
<!-- 10. Explicar qué entiende por el término 6x35 y 7x50 tal como se aplica a los prismáticos/binoculares. -->
[[Image:Porro binocular.jpg|thumb|right|300px|'''A typical Porro prism binoculars design''']]
 
The numbers used for describing binoculars give the power followed by the diameter of the objective lens (The largest diameter lens) in millimeters. This means that 6x35 have a magnifying power of 6x and have a diameter of 35mm.
 
  
The power represents how much bigger an object appears than with the unaided eye. You can also think of how many times closer it appears to be. The diameter lets you know how much light is gathered by the lens. A 50mm objective lens gathers much more light than a 35mm objective lens. Because the amount of light that is gathered increases if we increase the area  that the light hits, we can calculate the light gathering of a lens using the area of a circle:
+
{{clear}}
  
Area of lens= π  (radius of lens)<math>^2</math>
+
{{clear}}
  
{| border ="2"
+
{{clear}}
|+Numbers that Describe Binoculars
 
| Binocular Specification || Magnifying Power || Diameter of objective  (mm) || Area of objective <math>mm^2</math> || Light gathering power (compared to unaided eye)     
 
|-
 
|Unaided Eye || 1x || 8|| 50.265|| 1x
 
|-
 
|10x25 || 10x || 25 || 490.8738 || 9.7x
 
|-
 
|6x35 || 6x || 35 || 962.11275 || 19.14x
 
|-
 
| 7x50 || 7x || 50 || 1,963.495 || 39.06x
 
|-
 
|}
 
  
The 50mm objective lens collects 2.0408... times more light than a 35mm objective lens. If you are in a dark environment, you will get twice as much light with the 7x50 binoculars than with a 6x35. The 7x50 binoculars has more magnifying power (7/6 or 1.167 times) than the 6x35 binoculars.
+
{{clear}}
  
The higher the first number, the larger things appear, but the harder it is to hold the binoculars steady. Above 10x most people need a tripod to hold it steady enough to be useful. The higher the second number, the more light gathering power, which allows you to continue to see even in low light conditions, but the binoculars are much heavier as well.
+
{{clear}}
  
Knowing what the numbers on a pair of binoculars mean is important as you are choosing which ones are best for you, but binoculars are a very personal thing, so try them before you buy them.
+
{{clear}}
  
 
<noinclude></noinclude>
 
<noinclude></noinclude>
Line 289: Line 220:
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=11}}
 
{{ansreq|page={{#titleparts:{{PAGENAME}}|2|1}}|num=11}}
 
<noinclude></noinclude>
 
<noinclude></noinclude>
<!-- 11. Define the term "f/stop" as used in connection with cameras. What does it mean when a lens is fast or slow? Is an f/8.5 lens faster or slower than an f/8 lens? -->
+
<!-- 11. Definir el término «f/parada», tal como se utiliza en relación con las cámaras. ¿Qué significa que un lente es rápido o lento? Un F/8.5 es un lente más rápido o más lento que un lente f /8? -->
  
A faster lens has a lower f-number, and lets in more light than a slower lens. The f-number is the ratio of the diameter of the entrance pupil to the focal length of the lens.
+
{{clear}}
  
<math>f\ number = \frac {Focal\ length} {Diameter\ of\ objective}</math>
+
{{clear}}
  
The two parameters that define the f-number of an optical system are:
+
{{clear}}
  
;Focal Length
+
{{clear}}
:The longer the focal length, the more magnifying power the optical system has. You will choose a very long focal length lens if you wish to photograph birds, and a short focal length lens to photograph scenic shots such as a panarama.
 
  
;Diameter of the lens
+
{{clear}}
:The larger the diameter the more light is let in. So to have a fast lens, you will need a large diameter lens, and the longer the focal length, the larger the diameter needs to be to have the same speed. A 50mm f/4 lens will have a diameter of 12.5 mm, but a 400mm f/4 lens will have a diameter of 100mm.
 
  
The advantage of a faster lens is that there is more light, so it is easier to see, and for photography, you can keep the exposure time low.
+
{{clear}}
  
The disadvantage of a fast lens is that it is heavier, and has less depth of field.
+
{{clear}}
  
 
<noinclude></noinclude>
 
<noinclude></noinclude>
 
{{CloseReq}} <!-- 11 -->
 
{{CloseReq}} <!-- 11 -->
 
<noinclude></noinclude>
 
<noinclude></noinclude>
==References==
+
==Referencias==
* http://www.tradeshop.com/gems/feldspar.html
 
[[Category:Adventist Youth Honors Answer Book|{{SUBPAGENAME}}]]
 
 
<noinclude></noinclude>
 
<noinclude></noinclude>
<section end="Body" />
+
{{CloseHonorPage}}

Latest revision as of 00:48, 26 July 2022

Other languages:
English • ‎español • ‎français
Óptica

Nivel de destreza

2

Año

1962

Version

16.11.2024

Autoridad de aprobación

Asociación General

Optics AY Honor.png
Óptica
Salud y ciencia
Nivel de destreza
123
Autoridad de aprobación
Asociación General
Año de introducción
1962
Vea también


1

Definir y/o dibujar un diagrama de lo siguiente:


1a

Longitud focal



1b

Lente positivo



1c

Lente negativo



1d

Dos tipos de distorsión



1e

Color longitudinal



1f

Color lateral



1g

Aberración esférica



1h

Lente acromática



1i

Refracción de la luz




2

Explicar cómo se comporta la luz cuando choca o atraviesa agua, aceite, feldespato y un espejo.



3

Nombrar y dibujar diagramas de tres tipos de lentes positivas y tres de lentes negativos.



4

¿Cuál debe ser la mínima distancia de la fuente de luz de un lente cuando se prueba la longitud focal?



5

Encontrar la longitud focal de al menos cuatro lentes, uno debe ser una lente negativa.



6

Explicar por medio de un diagrama por qué una imagen positiva de un lente hace que una imagen se vea invertida.



7

Mostrar con diagrama cómo funciona un prisma. Mencionar los ángulos que los colores aparecen y desaparecen.



8

Demostrar lo que ocurre cuando la luz golpea en un vidrio de un solo sentido (opaco o semitransparente).



9

Construir un instrumento óptico usando espejos o lentes, como un periscopio, una diapositiva o proyector de opacos o un simple telescopio.



10

Explicar qué entiende por el término 6x35 y 7x50 tal como se aplica a los prismáticos/binoculares.



11

Definir el término «f/parada», tal como se utiliza en relación con las cámaras. ¿Qué significa que un lente es rápido o lento? Un F/8.5 es un lente más rápido o más lento que un lente f /8?




Referencias