AY Honors/Lichens, Liverworts & Mosses/Answer Key
1. Know the life cycle of a moss, lichen, or liverwort.
2. What are lichens?
Lichens are symbiotic associations of a fungus with a photosynthetic partner (called a photobiont) that can produce food for the lichen from sunlight. The photobiont is usually either green alga or cyanobacterium.
3. Name at least two ways lichens have been of value to man.
Soil Stabilization
Most lichens grow on stable rock surfaces or the bark of old trees, but many others grow on soil and sand. In these latter cases, lichens are often an important part of soil stabilization; indeed, in some desert ecosystems, vascular (higher) plant seeds cannot become established except in places where lichen crusts stabilize the sand and help retain water.
Feed for livestock
Lichens may be eaten by some animals, such as reindeer. In arctic regions where reindeer are raised as livestock, lichen is their main source of feed.
Pollution indicator organisms
Although lichens typically grow in naturally harsh environments, most lichens, especially epiphytic fruticose species and those containing cyanobacteria, are sensitive to manufactured pollutants. Hence, they have been widely used as pollution indicator organisms.
Medicine and dyes
Many lichens produce secondary compounds, including pigments that reduce harmful amounts of sunlight and powerful toxins that reduce herbivory or kill bacteria. These compounds are very useful for lichen identification, and have had economic importance as dyes or primitive antibiotics. Extracts from many Usnea species were used to treat wounds in Russia in the mid-twentieth century. Orcein and other lichen dyes have largely been replaced by synthetic versions.
4. How are liverworts different than all other green plants? Name one used in aquariums. What is its function?
Liverworts have a unicellular, root-like structure called a rhizoid which anchors it to its substrate. Many other plants have rhizoids, but only in the liverwort is the rhizoid unicellular.
One of the more than 100 species in the liverwort genus Riccia is the "slender riccia" (Riccia fluitans), which can be found floating in ponds, and is sometimes used in aquariums. It is sometimes called crystalwort. It is used in aquariums as a retreat for young fry and is used in live-bearing tanks. It is also used as an oxygenator, as bottom cover, and as bubble-nest support.
5. Describe at least three significant ways moss has played in the economy of man.
Agriculture
Peat (Sphagnum moss) is used to loosen and fertilize soil for agriculture. It is also used in the construction material Peatcrete, and it has been used as fuel.
Landscaping
Moss is used as a base layer in the art of bonsai. It is also a popular terrarium plant.
Medicine
Moss was used for dressing wounds during World War I. It was also used as pillow filler for soldiers to rest upon when they were transported from the battlefield to the hospital.
Wallpaper
Sphagnum moss was used as wallpaper in the early 1900's.
6. Make a moss garden (small terrarium) or "eternal garden" using at least three different kinds of mosses and lichens.
Note: This activity meets a requirement in the Ranger AY curriculum. A terrarium may be constructed from any clear container of nearly any size, from baby food jars to storage tubs.
Start by putting down a layer of gravel, rocks, vermiculite or Perlite. Then place a layer of soil on top of this. Place the plants atop the soil and add a few rocks for interest. Water once, but do not overwater. Put the lid on and place the container in a place where it can receive indirect sunlight. If algae begins to grow on the container walls, move to a more shady location. You should not need to open the lid for months, as the terrarium will develop its own climate, and all the moisture remains in the container.
7. Find and identify five lichens, one liverwort, and six mosses.
There are thousands of species of lichens, liverworts, and mosses, and providing an identification guide is well beyond the scope of this chapter. In order to meet this requirement, you will most likely need to obtain a field guide. Here are a few possibilities:
- Plants without leaves;: Lichens, fungi, mosses, liverworts, slime-molds, algae, horsetails
- Walk Softly Upon the Earth, a Pictorial Field Guide to Missouri Mosses, Liverworts and Lichens
Another alternative is to find an online key:
- Mosses
- Lichens
- Liverworts
- Mosses and Liverworts
The best approach for this requirement is to familiarize yourself with these plants as much as you can, and then go outside and see what's there. Whenever you come across a specimen, try to identify it. If possible, collect a bit of it and take it home for a closer examination. This is far better than deciding that you are going to go out and find Cladonia portentosa. In other words, instead of deciding what you're going to find and then going out to look for it, go out and see what's there and then identify it.
8. Observe the spore caps of several different kinds of moss under a magnifier to see the differences in "hair caps" and "teeth" that separate many species.
The Bryopsida constitute the largest class of mosses, containing 95% of all moss species. It consists of approximately 9,500 species, common throughout the whole world.
The group is distinguished by having spore capsules with teeth that are arthrodontous; the teeth are separate from each other and jointed at the base where they attach to the opening of the capsule. These teeth are exposed when the covering operculum falls off. In other groups of mosses, the capsule is either nematodontous with an attached operculum, or else splits open without operculum or teeth.
Capsule structure
Among the Bryopsida, the structure of the capsule (sporangium) and its pattern of development is very useful both for classifying and for identifying moss families. Most Bryopsida produce a capsule with a lid (the operculum) which falls off when the spores inside are mature and thus ready to be dispersed. The opening thus revealed is called the stoma (meaning "mouth") and is surrounded by one or two peristomes. A peristome is a ring of triangular "teeth" formed from the remnants of specially thickened cell walls. There are usually 16 such teeth in a single peristome, and in the Bryopsida the teeth are separate from each other and able to both fold in to cover the stoma as well as fold back to open the stoma. This articulation of the teeth is termed arthrodontous.
There are two basic arthrodontous peristome types. The first is termed haplolepidous and consists of a single circle of 16 peristome teeth. The second type is the diplolepidous peristome fround in subclass Bryidae. In this type, there are two rings of peristome teeth—an inner endostome (short for endoperistome) and an exostome. The endostome is a more delicate membrane, and its teeth are aligned between the teeth of the exostome. There are a few mosses in the Bryopsida that have no peristome in their capsules. These mosses still undergo the same cell division patterns in capsule development, but the teeth do not fully develop.
For more information, see