Especialidades JA/Agricultura/Respuestas

From Pathfinder Wiki
< AY Honors‎ | AgricultureAY Honors/Agriculture/Answer Key/es /
Revision as of 20:31, 9 March 2021 by W126jep (talk | contribs) (Created page with "{{clear}}")
Other languages:
English • ‎español • ‎français


Template:Honor desc



1

Mencionar de los componentes del suelo. ¿Por qué es importante el suelo para las plantas?



2

Explicar la diferencia entre la arcilla, arena y suelos loam. Hacer una lista de tres cultivos que crecen bien en cada una de ellas.


Clay
Clayey soils are made from very fine particles which stick together easily. Water does not easily soak through clayey soils, but once it penetrates, the clay holds it well. It must be broken up before it can be used for agriculture. This can be done by mixing it with sand, sawdust, wood chips, lime, or manure. Crops that grow well in clayey soils include celery, wheat, oats, beans, and clover.
Sand
Sandy soils are made from coarse particles. Water soaks into sand quickly, but will not remain there for very long. This can be addressed by adding clayey soil to it. Crops that grow well in sandy soil include melons, cucumbers, peaches, peanuts, and beans.
Loam
Loam is soil composed of sand, silt, manure, and clay in relatively even concentration (about 40-40-10-10% concentration respectively). Loams are gritty, plastic when moist, and retain water easily. They generally contain more nutrients than sandy soils. In addition to the term loam, different names are given to soils with slightly different proportions of sand, silt, manure and clay: sandy loam, silty loam, clay loam, sandy clay loam, silty clay loam, and manural loam. Loam soil is ideal for growing crops because it retains nutrients well and retains water while still allowing the water to flow freely. This soil is found in a majority of successful farms in regions around the world known for their fertile land. Crops that do well in loamy soil include barley, turnips, and potatoes.


3

Examinar la germinación de tres variedades de semillas, 100 semillas por cada variedad. Registrar el porcentaje de germinación después de tres, cuatro y cinco días.


First, wrap each variety seeds in a paper towel. Then dampen the paper towels and place them each inside their own clear plastic bag (such as a sandwich bag or a freezer bag) so that they retain moisture. Do not seal the bags. Place the bags in a warm place. After three days, carefully remove the paper towel from each bag, open it, and count the number of seeds that have sprouted. If you started with 100 seeds as per this requirement, the germination percentage will equal the number of seeds that have sprouted. Write this percentage down for each variety.

La especialidad de Semillas - Avanzado tiene un requisito similar, entonces considere desarrollarlas juntas.


4

Explicar cómo las plantas obtienen nutrientes y cómo los convierten en comida. Explicar las diferencias entre nutrientes primarios, secundarios y micronutrientes.


Fertilizers can be divided into macronutrients or micronutrients based on their concentrations in plant dry matter. There are six macronutrients: nitrogen, phosphorus, and potassium, often termed "primary macronutrients" because their availability is usually managed with NPK fertilizers, and the "secondary macronutrients" — calcium, magnesium, and sulfur — which are required in roughly similar quantities but whose availability is often managed as part of liming and manuring practices rather than fertilizers. The macronutrients are consumed in larger quantities and normally present as a whole number or tenths of percentages in plant tissues (on a dry matter weight basis). There are many micronutrients (such as boron, chlorine, manganese, iron, zinc, copper, and molybdenum), required in concentrations ranging from 5 to 100 parts per million (ppm) by mass.


5

Nombrar e identificar 10 malezas comunes de la comunidad y decir la mejor manera de eliminarlos, usando métodos manuales o químicos.


Chenopodium album

Chenopodium album (Fat hen)

Where found: Worldwide

Description: Chenopodium album is a fast-growing weedy annual plant in the genus Chenopodium. The standard English name is Fat-hen; other names include white goosefoot, lamb's quarters, pigweed or dungweed, or more ambiguously as just goosefoot.

Control: It may be controlled by dark tillage, rotary hoeing, or flaming when the plants are small. Crop rotation of small grains will suppress an infestation. It is, however, difficult to control with chemical means.
ChenopodiumAlbum001.JPG

Stellaria

Stellaria (Chickweed)

Where found: Europe, North America

Description: Stellaria is a genus of about 90-120 species flowering plants in the family Caryophyllaceae, with a cosmopolitan distribution. Common names include stitchwort and chickweed.

Control: Control is difficult due to the heavy seed sets, although herbicides are effective when the plants are small. Common Chickweed is very competitive with small grains, and can produce up to 80% yield losses among barley.
StellariaMedia001.JPG



6

Identificar seis plagas comunes de insectos o enfermedades. Mencionar qué plantas generalmente son afectadas y la forma de eliminar o prevenir su aparición.


Boll weevil

Anthonomus grandis (Boll weevil)

Where found: Thought to be native to Central America, it migrated into the US from Mexico in the late 19th century and had infested all US cotton-growing areas by the 1920s, devastating the industry and the people working there and traumatizing the people of the American south. During the late 20th century it became a serious pest in South America as well.

Description: The boll weevil (Anthonomus grandis) is a beetle measuring an average length of six millimeters, which feeds on cotton buds and flowers.

Affected crops: Cotton

Control: The Boll Weevil Eradication Program is a program sponsored by the United States Department of Agriculture (USDA) that has sought to eradicate the boll weevil in the cotton-growing areas of the United States. It is one of the world's most successful implementations of integrated pest management. Three main techniques are employed over a 3- to 5-year period: pheromone traps for detection, cultural practices to reduce the weevil’s food supply, and malathion treatments. During the first year, applications of malathion are made every five to seven days starting in late summer. The frequency is reduced to every 10 days during the later part of the growing season until the first frost. The cotton stalks are shredded and plowed into the ground to eliminate their use as a winter shelter. During years 2 through 5, the automatic spraying is supplemented by an intensive trapping program (one trap per 1-2 acres), and malathion applications are made only in those fields where weevils are detected. This phase begins in late spring and continues until the first killing frost. The final phase of the program involves monitoring and trapping at a density of one trap per 10 acres, with spot spraying as required. The program has become more high-tech in recent years, employing GPS mapping technology and bar code readers that transmit trap data electronically.
Boll weevil.jpg

Cutworm

Noctuidae (Cutworm)

Where found: Their distribution is worldwide.

Description: The term cutworm is used for the larvae of many species of moth. Most cutworms are in the moth family Noctuidae, however, many noctuid larvae are not cutworms. Cutworms are notorious agricultural and garden pests. They are voracious leaf, bud, and stem feeders and can destroy entire plants. They get their name from their habit of "cutting" off a seedling at ground level by chewing through the stem. Some species are subterranean and eat roots. Cutworms are usually green, brown, or yellow soft-bodied caterpillars, often with longitudinal stripes, up to one inch in length. There are many variations across the genera.

Affected crops: Most often tomato, pepper, pea, or bean

Control: While there are pesticides which can control these insects, the non-industrial gardener can protect threatened plants by simply impeding the ground-hiding cutworm caterpillar from climbing the plant; they hide in the soil near the plants and climb them at night.

To prevent this, one can:

  • Place a "cutworm ring" around the plant. It can be a can with both ends cut off, or anything similar, even a ring made of cardboard. It should be at least four inches high above the soil and go one inch below the surface. Some even use five gallon buckets with the bottom cut out, planting the seedling and bucket at the same time.
  • Wrap the stem of the plant in aluminium foil, wax paper, coloured paper, cardboard, or plastic.
  • Reputedly as reliable as anything: simply brace both sides of the stem with popsicle sticks, toothpicks, or even sticks from the yard. If they run smoothly up the side of the plant several inches, this apparently stops the cutworm from "wrapping itself around" the plant, necessary for its method of cutting it off. In fact, cutworms do not chew through stems by "wrapping" themselves, so the efficacy of this method is highly doubtful.
The beet armyworm (Spodoptera exigua)

Brown marmorated stink bug

Halyomorpha halys (Brown marmorated stink bug)

Where found: The brown marmorated stink bug is believed to have "hitched a ride" to the United States as a stowaway in packing crates from Asia; it was accidentally introduced there from China or Japan. Its native range also includes Korea and Taiwan.

Description: Looks similar in appearance to other native species of shield bugs including Acrosternum, Euschistus, and Podisus, except that several of the abdominal segments protrude from beneath the wings and are alternatively banded with black and white (visible along the edge of the bug even when wings are folded) and a white stripe or band on the next to last (4th) antennal segment. The adults are approximately 5/8 inch long and the underside is white or pale tan, sometimes with grey or black markings. The legs are brown with faint white banding.

Affected crops: Fruits, vegetables, soybeans

Control: Infestations should be reported to your local county Cooperative Extension office as this is a fairly new species to invade the United States. They will be able to help you control them.
BMSB 05.jpg


7

Localizar dos fuentes de información meteorológica agrícola. ¿Cómo es ésta información útil para el agricultor?


  1. USDA's Weekly Weather and Climate Bulletin
  2. U.S. National Climate Data Center

Climate is what to expect. Weather is what you get. Climate is basically a long-term average of what the weather has done in the past.

Knowing the climate helps the farmer plan agricultural activities such as planting and harvesting, as well as assisting in crop selection. Crops need to be in the ground early enough that they will be able to produce their yield before the first frost, but late enough to avoid springtime frosts. The climate tells the farmer how many growing days to expect, and that can be compared to the number of growing days required by various crops. Some crops also need to be harvested before the weather gets too hot, and other crops may allow multiple plantings and harvestings per season.

Weather also plays a hand in timing agricultural activities. A field needs to dry out before it is plowed, and then it may need to dry out for a few more days before it is disced. Dry weather is also needed to allow hay time to cure between mowing and bailing, and it is sometimes important when applying fertilizers or pesticides.


8

Ayudar en la siembra, cultivo, cosecha en por lo menos four diferentes cultivos. Mantener un registro del trabajo realizado y los problemas que enfrentó en la siembra a la cosecha.


Your log need not be any more complicated than a notebook and pen. You could include information such as:

  • Plowing/Discing
    • When was it done?
    • What was the condition of the soil?
    • Cost
  • Planting
    • Date
    • Amount of seed used
    • Method (how was the planting done?)
    • Cost
  • Fertilizer
    • When applied
    • What kind was applied
    • Cost
  • Pest Control
    • Dates and types of pesticides and herbicides
    • Cultivation dates
    • Mechanical/cultural controls applied
    • Cost
  • Irrigation
    • Dates
    • Rainfall dates
    • Cost
  • Harvest
    • Date
    • Yield


9

Conocer el propósito de los siguiente:


9a

Arado


The primary purpose of plowing is to turn over the upper layer of the soil, bringing fresh nutrients to the surface, while burying weeds and the remains of previous crops, allowing them to break down. It also aerates the soil, and allows it to hold moisture better. In modern use, a plowed field is typically left to dry out, and is then harrowed before planting.


9b

Remover tierra con discos de tractor


Disking is often carried out on fields to follow the rough finish left by plowing operations. The purpose of this is generally to break up clods and lumps of soil and to provide a finer finish, a good tilth or soil structure that is suitable for seeding and planting operations.


9c

Cultivar


A cultivator is a farm implement for stirring and pulverizing the soil, either before planting or to remove weeds and to aerate and loosen the soil after the crop has begun to grow.


9d

Riego


Irrigation is the artificial application of water to the soil for assisting in growing crops. In crop production it is mainly used in dry areas and in periods of rainfall shortfalls, but also to protect plants against frost.


9e

Cosecha


The purpose of harvesting is to collect the salable product grown in a field when it reaches maturity.



10

Nombrar y determinar las 10 aves comunes de su localidad y decir su valor para el agricultor.


The greatest benefit birds provide to farmers is their voracious appetites for insects.

Please consult Wikibooks' Field Guide to Birds to help you identify ten birds in your area. As of this writing, this field guide is still in its infancy, so you might be well served to purchase a more thorough field guide. Field guides are generally tailored to a specific area of the world, so be sure to consult one that covers your area.


11

¿Qué es la erosión? ¿Cómo puede prevenirse?


Erosion is the displacement of soil by wind, water, or ice by downward or down-slope movement. It can occur quickly on steep ground - especially if there is nothing growing there. It can be slowed by minimizing the amount of time the land has nothing growing on it. When plowing, discing, or planting, it is best to make furrows perpendicular to the slope of the ground. Plowing straight uphill will cause furrows to act as ever-widening ditches that channel the water quickly away, carrying soil with it. Plowing across a hill instead slows the descent of rainwater and allows it to drop the sediments it picks up rather than carrying it off.


12

Visitar una cooperativa local de servicios de extensión y averiguar la forma en que la organización ayuda a los agricultores. Escribir un informe de una página de la visita.


USA

The Cooperative Extension Service, also known as the Extension Service of the USDA, is a non-formal educational program implemented in the United States designed to help people use research-based knowledge to improve their lives. The service is provided by the state's designated land-grant universities. In most states the educational offerings are in the areas of agriculture and food, home and family, the environment, community economic development, and youth and 4-H. The Cooperative State Research, Education, and Extension Service of the USDA administers funding for Smith Lever Act services in cooperation with state and county governments and land-grant universities.

This table summarizes the cooperative extension programs in each state. (Under the 1890 amendment to the Morrill Act, if a state's land-grant university was not open to all races, a separate land-grant university had to be established for each race. Hence, some states have more than one land-grant university.)

Cooperative Extension&
State University Extension Website
Alabama Alabama A&M University
Auburn University
Tuskegee University&
Alabama Cooperative Extension System
Alaska University of Alaska University of Alaska Cooperative Extension
Arizona University of Arizona Arizona Cooperative Extension
Arkansas University of Arkansas
University of Arkansas at Pine Bluff
University of Arkansas Cooperative Extension Service
California University of California University of California Cooperative Extension
Colorado Colorado State University Colorado State Cooperative Extension
Connecticut University of Connecticut Connecticut Cooperative Extension System
Delaware University of Delaware
Delaware State University
Delaware Cooperative Extension
DSU Cooperative Extension
District of Columbia University of the District of Columbia University of the District of Columbia Cooperative Extension Service
Florida University of Florida
Florida A&M University
University of Florida IFAS Extension
Georgia University of Georgia
Fort Valley State University
University of Georgia Cooperative Extension
Hawaii University of Hawaii University of Hawaii Cooperative Extension Service
Idaho University of Idaho University of Idaho Extension
Illinois University of Illinois University of Illinois Extension
Indiana Purdue University Purdue University Extension
Iowa Iowa State University Iowa State University Extension
Kansas Kansas State University Kansas State University Research & Extension
Kentucky University of Kentucky University of Kentucky Cooperative Extension Service
Louisiana Louisiana State University
Southern University and A&M College
Louisiana Cooperative Extension Service
Maine University of Maine University of Maine Extension
Maryland University of Maryland
University of Maryland Eastern Shore
Maryland Cooperative Extension
Massachusetts University of Massachusetts University of Massachusetts Extension
Michigan Michigan State University Michigan State University Extension
Minnesota University of Minnesota Minnesota Extension Service
Mississippi Mississippi State University
Alcorn State University
Mississippi State University Extension
Missouri University of Missouri
Lincoln University
University of Missouri Extension
Montana Montana State University Montana State University Extension Service
Nebraska University of Nebraska University of Nebraska Cooperative Extension
Nevada University of Nevada University of Nevada Cooperative Extension
New Hampshire University of New Hampshire University of New Hampshire Cooperative Extension
New Jersey Rutgers University Rutgers Cooperative Extension
New Mexico New Mexico State University New Mexico State University Cooperative Extension Service
New York Cornell University Cornell Cooperative Extension
North Carolina North Carolina State University
North Carolina A&T State University
North Carolina Cooperative Extension Service
North Carolina A&T State University Cooperative Extension Program
North Dakota North Dakota State University North Dakota State University Extension Service
Ohio Ohio State University The Ohio State University Extension
Oklahoma Oklahoma State University Oklahoma Cooperative Extension Service
Oregon Oregon State University Oregon State University Extension Service
Pennsylvania Penn State Penn State Cooperative Extension
Rhode Island University of Rhode Island University of Rhode Island Cooperative Extension
South Carolina Clemson University
South Carolina State University
Clemson University Cooperative Extension Service
South Dakota South Dakota State University South Dakota State University Cooperative Extension Service
Tennessee University of Tennessee
Tennessee State University
University of Tennessee Extension
Tennessee State University Cooperative Extension Program
Texas Texas A&M University
Prairie View A&M University
Texas AgriLife Extension Service
Utah Utah State University Utah State University Extension
Vermont University of Vermont University of Vermont Extension System
Virginia Virginia Tech
Virginia State University
Virginia Cooperative Extension
Washington Washington State University Washington State University Extension
West Virginia West Virginia University West Virginia University Extension Service
Wisconsin University of Wisconsin-Extension University of Wisconsin Extension
Wyoming University of Wyoming University of Wyoming Cooperative Extension Service

Canada

Agriculture extension (the process of sharing agricultural research with the farming community) is the responsibility of provincial governments in Canada. Contact your Provincial Ministry of Agriculture for contact information for the appropriate office near you.



References

  1. http://www.csrees.usda.gov/qlinks/partners/partners_list.pdf Retrieve 2007-10-22.
  2. Although Tuskeegee University has been a private university, it began to receive Cooperative Extension funding in 1972.